首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   1篇
大气科学   12篇
地球物理   20篇
地质学   30篇
海洋学   23篇
天文学   19篇
综合类   1篇
自然地理   7篇
  2021年   2篇
  2019年   3篇
  2018年   2篇
  2016年   6篇
  2015年   5篇
  2014年   7篇
  2013年   3篇
  2012年   6篇
  2011年   6篇
  2010年   6篇
  2009年   16篇
  2008年   2篇
  2007年   6篇
  2006年   6篇
  2005年   6篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1991年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有112条查询结果,搜索用时 0 毫秒
11.
12.
This work is inspired by the sudden resurgence of the submersed aquatic vegetation (SAV) bed in the Chesapeake Bay (USA). Because the SAV bed occurs at the mouth of the Bay's main tributary (Susquehanna River), it plays a significant role in modulating sediment and nutrient inputs from the Susquehanna to the Bay. Previous model studies on the impact of submersed aquatic vegetation on the development of river mouth bars lacked a complete mechanistic understanding. This study takes advantage of new advances in 3D computational models that include explicit physical-sedimentological feedbacks to obtain this understanding. Specifically, we used Delft3D, a state-of-the-art hydrodynamic model that provides fine-scale computations of three-dimensional flow velocity and bed shear stress, which can be linked to sediment deposition and erosion. Vegetation is modeled using a parameterization of hydraulic roughness that depends on vegetation height, stem density, diameter, and drag coefficient. We evaluate the hydrodynamics, bed shear stresses, and sediment dynamics for different vegetation scenarios under conditions of low and high river discharge. Model runs vary the vegetation height, density, river discharge, and suspended-sediment concentration. Numerical results from the idealized model show that dense SAV on river mouth bars substantially diverts river discharge into adjacent channels and promotes sediment deposition at ridge margins, as well as upstream bar migration. Increasing vegetation height and density forms sandier bars closer to the river mouth and alteration of the bar shape. Thus, this study highlights the important role of SAV in shaping estuarine geomorphology, which is especially relevant for coastal management. © 2019 John Wiley & Sons, Ltd.  相似文献   
13.
In this study, we used data recorded by two consecutive passive broadband deployments on the Gulf of Aden northern margin, Dhofar region, Sultanate of Oman. The objective of these deployments is to map the young eastern Gulf of Aden passive continental margin crust and upper mantle structure and rheology. In this study, we use shear-wave splitting analysis to map lateral variations of upper mantle anisotropy beneath the study area. In this study, we found splitting magnitudes to vary between 0.33 and 1.0 s delay times, averaging about 0.6 s for a total of 17 stations from both deployment periods. Results show distinct abrupt lateral anisotropy variation along the study area. Three anisotropy zones are identified: a western zone dominated by NW–SE anisotropy orientations, an eastern zone dominated with NE–SW anisotropy orientations, and central zone with mixed anisotropy orientations similar to the east and west zones. We interpret these shorter wavelength anisotropy zones to possibly represent fossil lithospheric mantle anisotropy. We postulate that the central anisotropy zone may be representing a Proterozoic suture zone that separates two terranes to the east and west of it. The anisotropy zones west and east were being used indicative of different terranes with different upper mantle anisotropy signatures.  相似文献   
14.
Investigations on how desiccation changes sorption of organic compounds by salt marsh sediments provide insight into the physical and chemical properties of these wide-spread coastal sediments. We measured sorption of compounds with different polarities (lysine, tyrosine, naphthalene and aniline) onto natural sediments and sediments that were dried and rewetted. Sorption of lysine by marsh sediment decreased significantly when the sediment was dried using a freeze-drier, oven, or desiccator, and sorption capacity was not restored when sediments were rewetted. In contrast to lysine, the sorption capacity of more hydrophobic compounds (tyrosine, aniline and naphthalene) increased significantly after salt marsh sediment was dried. These results suggest that drying greatly increased sediment hydrophobicity. Consistently, water drop penetration time, an index of hydrophobicity, was significantly lower for combusted sediments than for those that were simply dried. Sediments treated with EDTA, or boiled in seawater, exhibited a similar or even greater reduction in lysine sorption capacity compared with sediments that were dried. Water retention capacity of salt marsh sediment decreased 50% after sediment was dried. The effects of pH and salinity on lysine sorption in wet and dry sediments suggest that carboxyl groups play a major role in lysine sorption through cation ion exchange, and drying may reduce access to carboxyl groups. We hypothesize that the three-dimensional (3D) structure of organic matter, originating mainly from Spartina alterniflora, is an important factor controlling sorption capacity in salt marsh sediment. The drying process makes sedimentary organic matter change conformation, shrink in volume, and expose hydrophobic groups, thus becoming more hydrophobic. In environments with wet and dry cycles, the distribution of hydrophobic or hydrophilic compounds between solution and particulate phases could thus be influenced by the 3D structure and polarity of organic matter.  相似文献   
15.
The quantitative relationship between organic carbon and mineral contents of particles sinking below 1800 m in the ocean indicates that organisms with mineral shells such as coccolithophores are of special importance for transporting carbon into the deep sea. Several hypotheses about the mechanism behind this relationship between minerals and organic matter have been raised, such as mineral protection of organic matter or enhanced sinking rates through ballast addition. We examined organic matter decomposition of calcifying and non-calcifying Emiliania huxleyi cultures in an experiment that allowed aggregation and settling in rotating tanks. Biogenic components such as particulate carbon, particulate nitrogen, particulate volume, pigments, transparent exopolymer particles (TEP), and particulate amino acids in suspended particles and aggregates were followed over a period of 30 d. The overall pattern of decrease in organic matter, the amount of recalcitrant organic matter left after 30 d, and the compositional changes within particulate organic matter indicated that cells without a shell are more subject to loss than calcified cells. It is suggested that biogenic calcite helps in the preservation of particulate organic matter (POM) by offering structural support for organic molecules. Over the course of the experiment, half the particulate organic carbon in both calcifying and non-calcifying cultures was partitioned into aggregates and remained so until the end of the experiment. The partial protection of particulate organic matter from solubilization by biominerals and by aggregation that was observed in our experiment may help explain the robustness of the relationship between organic and mineral matter fluxes in the deep ocean.  相似文献   
16.
Modeling landscape with high-resolution digital elevation model (DEM) in a geographic information system can provide essential morphological and structural information for modeling surface processes such as geomorphologic process and water systems. This paper introduces several DEM-based spatial analysis processes applied to characterize spatial distribution and their interactions of ground and surface water systems in the Greater Toronto Area (GTA), Canada. The stream networks and drainage basin systems were derived from the DEM with 30 m resolution and the regularities of the surface stream and drainage patterns were modeled from a statistical/multifractal point of view. Together with the elevation and slope of topography, other attributes defmed from modeling the stream system, and drainage networks were used to associate geological, hydrological and topographical features to water flow in river systems and the spatial locations of artesian aquifers in the study area. Stream flow data derived from daily flow measurements recorded at river gauging stations for multi-year period were decomposed into “drainage-area dependent“ and “drainage-area independent“ flow components by two-step “frequency“ and “spatial“ analysis processes. The latter component was further demonstrated to relate most likely to the ground water discharge. An independent analysis was conducted to model the distribution of aquifers with information derived from the records of water wells. The focus was given on quantification of the likelihood of ground water discharge to river and ponds through flowing wells, springs and seepages. It has been shown that the Oak Ridges Moraine (ORM) is a unique glacial deposit that serves as a recharge layer and that the aquifers in the ORM underlain by Hilton Tills and later deposits exposed near the steep slope zone of the ridges of ORM provide significant discharge to the surface water systems (river flow and ponds) through flowing wells, springs and seepages. Various statistics (cross- and auto-correlation coefficients, fractal R/S exponent) were used in conjunction with GIS to demonstrate the influence of land types, topography and geometry of drainage basins on short- and long-term persistence of river flows as well as responding time to precipitation events. The current study has provided not only insight in understanding the interaction of water systems in the GTA, but also a base for further establishment of an on-line GIS system for predicting spatial-temporal changes of river flow and groundwater level in the GTA.  相似文献   
17.
18.
This paper integrates studies on the natural subtropical montane evergreen broad-leaved forests (EBLFs) and secondary succession of the forests and plantations in Yunnan, to provide a basis for evaluating the sustainability of the forests in the mountain ecosystems of Yunnan, China. The EBLFs include mid-montane moist, monsoon, and semi-humid categories. The monsoon EBLF yielded the highest indices of the Shannon-Wiener H, Equitability J, Simpson D and Fisher’s alpha, followed by the mid-montane moist EBLF, then by the semi-humid forest. Since human uses have varied widely, the plant communities ranged from pioneer deciduous broad-leaved and/or pioneer coniferous stands to late-successional evergreen broad-leaved stands. The secondary succession pathways were from pioneer deciduous stands of Alnus accompanied by stands of pioneer coniferous Pinus and Keteleeria, through broad-leaved and coniferous mixed stands, to late-successional evergreen broad-leaved forests of Cyclobalanopsis and Castanopsis. In Yunnan, the EBLF is commonly replaced by plantations of exotic fast-growing Eucalyptus to produce industrial wood, oil, pulp and fuel. The result has been reduced plant diversity, and great loss of soil nutrients by erosion and runoff, as compared to the EBLF. Seventy-six plant species in the area have been ranked as critically endangered, endangered, or vulnerable. Their condition is seen as largely attributable to habitat loss or degradation. A clear understanding of ecological features and succession pathways of the EBLF can lead to more effective conservation and management of these fragile forests and the mountain ecosystems.  相似文献   
19.
This study demonstrates that intracrystalline organic matter in coral skeletons is well preserved over century timescales. The extent of preservation of organic matter in coral skeletons was investigated by measuring total organic carbon (TOC), total hydrolyzable amino acid (THAA), chloropigment, and lipid concentrations in 0-300 year old annual growth bands from Montastraea annularis (Florida Keys) and Porites lutea (Red Sea). Organic matter intrinsic to the calcium carbonate mineral (intracrystalline) was analyzed separately from total skeletal organic matter. The Red Sea coral had less TOC (0.02-0.04 wt%) than the Florida Keys coral (0.04-0.11 wt%), but a higher percent of intracrystalline organic matter in all annual bands measured. Carbon in the form of THAA, most likely from mineral-precipitating proteins, contributed 30-45% of the TOC in both corals. Carbon in lipids represented about 3% of the TOC in the coral skeletons. Chlorophyll-a and b were present in annual bands where endolithic algae were present, but these compounds were minor contributors to TOC. The distribution of specific organic compounds showed that organic matter was well preserved throughout the time period sampled in both the total and intracrystalline pools. Variations in THAA were not correlated with TOC over time, suggesting that organic matter that is involved in biomineralization, like amino acids, may be deposited in response to different environmental factors than are other components of skeletal organic matter. Differences in the quantity and composition of organic matter between the two corals investigated here were assessed using principal components analysis and suggest that location, species and skeletal structure may all influence organic matter content and possibly the degree of physical protection of organic matter by the coral skeleton. Further, our study suggests that intracrystalline organic matter may be better protected from diagenesis than non-intracrystalline organic matter and may therefore be a more reliable source of organic matter for paleoceanographic studies than total skeletal organic matter.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号