首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2022篇
  免费   90篇
  国内免费   30篇
测绘学   75篇
大气科学   158篇
地球物理   435篇
地质学   711篇
海洋学   179篇
天文学   366篇
综合类   6篇
自然地理   212篇
  2023年   12篇
  2022年   7篇
  2021年   39篇
  2020年   47篇
  2019年   65篇
  2018年   72篇
  2017年   75篇
  2016年   95篇
  2015年   75篇
  2014年   74篇
  2013年   149篇
  2012年   83篇
  2011年   115篇
  2010年   99篇
  2009年   119篇
  2008年   98篇
  2007年   95篇
  2006年   87篇
  2005年   67篇
  2004年   67篇
  2003年   55篇
  2002年   41篇
  2001年   35篇
  2000年   40篇
  1999年   28篇
  1998年   31篇
  1997年   19篇
  1996年   24篇
  1995年   16篇
  1994年   13篇
  1993年   11篇
  1992年   13篇
  1991年   15篇
  1990年   16篇
  1989年   17篇
  1988年   11篇
  1987年   13篇
  1986年   7篇
  1985年   22篇
  1984年   19篇
  1983年   16篇
  1982年   16篇
  1981年   18篇
  1980年   8篇
  1979年   11篇
  1978年   15篇
  1977年   11篇
  1973年   7篇
  1972年   5篇
  1971年   5篇
排序方式: 共有2142条查询结果,搜索用时 15 毫秒
201.
Large‐scale, servo‐hydraulic shake tables are a central fixture of many earthquake engineering and structural dynamics laboratories. Wear and component failure from frequent use may lead to control problems resulting in reduced motion fidelity, necessitating repairs and replacement of major components. This paper presents a methodology to evaluate shake table performance pre‐ and post‐repair, including the definition of important performance metrics. The strategy suggested is presented in the context of the rebuilding of a 4.9 × 3.1 m, 350‐kN‐capacity uniaxial shake table. In this case, the rebuild consisted of characterization of wear to table components, replacement of worn bearing surfaces, and replacement of hydraulic accumulators. To assess the effectiveness of the repair actions, sinusoidal and triangular waves, white noise, and earthquake histories were run on the table before and after the rebuild. The repair actions were successful in reducing the position and velocity dependence of friction, improving the ability of control algorithms to accurately reproduce earthquake motions. The maximum and average response spectral misfits in the period range of 0.1–2 seconds were reduced from approximately 50% to 15%, and from 5% to less than 2.5%, respectively.  相似文献   
202.
Understanding the impact of prior earthquake damage on residual capacity is important for postearthquake damage assessment of buildings; however, interpretation of such impact is challenging when based on tests using traditional reversed‐cyclic loading protocols. A new loading protocol, consisting of a dynamic earthquake displacement history followed by quasi‐static reversed‐cyclic loading to failure, is presented as an alternative to traditional simulated seismic loading protocols. Data are analyzed from a set of 12 nominally identical ductile reinforced concrete beams that were tested by using variations of this protocol and traditional reversed‐cyclic and monotonic protocols. Differences in the cycle content of the earthquake displacement histories applied to the test specimens allowed for the effects of load history variation below 2.2% drift to be isolated. It is found that such variation had no effect on the beam deformation capacities. The effects of dynamic loading rates are also analyzed and compared against control quasi‐static specimens. Relative strength increases due to dynamic loading are found to be more significant at yield than at ultimate. Dynamic loading rates led to modest reductions in the beam deformation capacities, but the presence of causality between these variables remains uncertain.  相似文献   
203.
The evolution of volcanic landscapes and their landslide potential are both dependent upon the weathering of layered volcanic rock sequences. We characterize critical zone structure using shallow seismic Vp and Vs profiles and vertical exposures of rock across a basaltic climosequence on Kohala peninsula, Hawai’i, and exploit the dramatic gradient in mean annual precipitation (MAP) across the peninsula as a proxy for weathering intensity. Seismic velocity increases rapidly with depth and the velocity–depth gradient is uniform across three sites with 500–600 mm/yr MAP, where the transition to unaltered bedrock occurs at a depth of 4 to 10 m. In contrast, velocity increases with depth less rapidly at wetter sites, but this gradient remains constant across increasing MAP from 1000 to 3000 mm/yr and the transition to unaltered bedrock is near the maximum depth of investigation (15–25 m). In detail, the profiles of seismic velocity and of weathering at wet sites are nowhere monotonic functions of depth. The uniform average velocity gradient and the greater depths of low velocities may be explained by the averaging of velocities over intercalated highly weathered sites with less weathered layers at sites where MAP > 1000 mm/yr. Hence, the main effect of climate is not the progressive deepening of a near‐surface altered layer, but rather the rapid weathering of high permeability zones within rock subjected to precipitation greater than ~1000 mm/yr. Although weathering suggests mechanical weakening, the nearly horizontal orientation of alternating weathered and unweathered horizons with respect to topography also plays a role in the slope stability of these heterogeneous rock masses. We speculate that where steep, rapidly evolving hillslopes exist, the sub‐horizontal orientation of weak/strong horizons allows such sites to remain nearly as strong as their less weathered counterparts at drier sites, as is exemplified by the 50°–60° slopes maintained in the amphitheater canyons on the northwest flank of the island. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
204.
Changes in monthly baseflow across the U.S. Midwest   总被引:1,自引:0,他引:1  
Characterizing streamflow changes in the agricultural U.S. Midwest is critical for effective planning and management of water resources throughout the region. The objective of this study is to determine if and how baseflow has responded to land alteration and climate changes across the study area during the 50‐year study period by exploring hydrologic variations based on long‐term stream gage data. This study evaluates monthly contributions to annual baseflow along with possible trends over the 1966–2016 period for 458 U.S. Geological Survey streamflow gages within 12 different Midwestern states. It also examines the influence of climate and land use factors on the observed baseflow trends. Monthly contribution breakdowns demonstrate how the majority of baseflow is discharged into streams during the spring months (March, April, and May) and is overall more substantial throughout the spring (especially in April) and summer (June, July, and August). Baseflow has not remained constant over the study period, and the results of the trend detection from the Mann–Kendall test reveal that baseflows have increased and are the strongest from May to September. This analysis is confirmed by quantile regression, which suggests that for most of the year, the largest changes are detected in the central part of the distribution. Although increasing baseflow trends are widespread throughout the region, decreasing trends are few and limited to Kansas and Nebraska. Further analysis reveals that baseflow changes are being driven by both climate and land use change across the region. Increasing trends in baseflow are linked to increases in precipitation throughout the year and are most prominent during May and June. Changes in agricultural intensity (in terms of harvested corn and soybean acreage) are linked to increasing trends in the central and western Midwest, whereas increasing temperatures may lead to decreasing baseflow trends in spring and summer in northern Wisconsin, Kansas, and Nebraska.  相似文献   
205.
Six major groups of trilobites from the Silurian and Devonian of Japan are evaluated for their paleobiogeographical signature. Silurian illaenids and scutelluids show four generic‐level and at least two species‐level links with the Australian segment of the Gondwana paleocontinent; encrinurids also indicate two generic‐level links with Australia and also the South China paleocontinent; whilst Devonian phacopids, and possibly proetids, suggest at least two generic‐level links with the North China paleocontinent. These different patterns may reflect the fragmentary biostratigraphical record of Japanese trilobites, but they also appear to reflect paleoenvironmental parameters associated with lithofacies, and paleoecology. Thus, Japanese assemblages of proetids and phacopids occurring in deep‐water clastic lithofacies have counterparts in similar settings in North China, and Japanese scutelluids and illaenids are strongly associated with shallow marine carbonate lithofacies that are similar to those of their occurrences in Australia. Japanese encrinurids occur in carbonate rocks indicative of shallow marine settings in the Kurosegawa Terrane, and they demonstrate a consistent paleobiogeographical affinity with Australia and South China. Larval ecology cannot be directly assessed for Japanese trilobite groups. However, proetids have consistently been shown to have planktonic protaspides, whereas illaenids, scutelluids, and encrinurids have benthic protaspides. Planktonic protaspides would have a greater propensity for distribution in ocean currents than benthic ones, and therefore may be of more limited paleobiogeographical utility. The combined data from the six different groups indicates that the complex paleobiogeographical patterns of the Japanese trilobite assemblages need to be interpreted with caution, and similarity of taxa does not necessarily denote paleogeographical proximity to other regions.  相似文献   
206.
Numerical modeling of groundwater-surface water interactions provides vital information necessary for determining the extent of nutrient transport, quantifying water budgets, and delineating zones of ecological support. The hydrologic data that drive these models are often collected at disparate scales and subsequently incorporated into numerical models through upscaling techniques such as piecewise constancy or geostatistical methods. However, these techniques either use basic interpolation methods, which often simplifies the system of interest, or utilize complex statistical methods that are computationally expensive, time consuming, and generate complex subsurface configurations. We propose a bulk parameter termed “vertically integrated hydraulic conductivity” (KV), and defined as the depth-integrated resistance to fluid flow sensed at the groundwater-surface water interface, as an alternative to hydraulic conductivity when investigating vertical fluxes across the groundwater-surface water interface. This bulk parameter replaces complex subsurface configurations in situations dominated by vertical fluxes and where heterogeneity is not of primary importance. To demonstrate the utility of KV, we extracted synthetic temperature time series data from a forward numerical model under a variety of scenarios and used those data to quantify vertical fluxes using the amplitude ratio method. These quantified vertical fluxes and the applied hydraulic head gradient were subsequently input into Darcy's Law and used to quantify KV. This KV was then directly compared to the equivalent hydraulic conductivity (KT) assuming an infinitely extending layer. Vertically integrated hydraulic conductivity allows for more accurate and robust flow modeling across the groundwater-surface water interface in instances where complex heterogeneities are not of primary concern.  相似文献   
207.
Building pressure cycling (BPC) is becoming an increasingly important tool for studying vapor intrusion. BPC has been used to distinguish subslab and indoor sources of vapor intrusion as well as to define reasonable worst case volatile organic compound mass discharge into a structure. Analyses have been performed both semi-quantitatively with concentration trends and quantitatively with more rigorous flux calculation and source attribution methods. This paper reviews and compares the protocols and outcomes from multiple published applications of this technology to define the key variables that control performance. Common lessons learned are identified, including those that help define the range of building size and type to which BPC is applicable. Differences in test protocols are discussed, recognizing that the complexity of the test protocol required depends on the particular objectives of each project. Research gaps are identified and tabulated for future validation studies and applications.  相似文献   
208.
A recalculation of the rate of westward drift of the eccentric geomagnetic dipole since 1900 has confirmed its correlation with irregularities in the excess length-of-day (LOD) as originally reported by Vestine. The major changes in the LOD curve since 1900 are shown to be well correlated with the westward drift rate from a number of magnetic models covering the interval. A new Magsat model of secular variation for 1980.0 shows no increase in the drift rate which dropped by a factor of three in the interval 1965–1970.  相似文献   
209.
Evapotranspiration (ET) is an important parameter in hydrologic processes and modelling. In agricultural watersheds with competing uses of fresh water including irrigated agriculture, estimating crop evapotranspiration (ETc) accurately is critical for improving irrigation system and basin water management. The use of remote sensing-based basal crop coefficients is becoming a common method for estimating crop evapotranspiration for multiple crops over large areas. The Normalized Difference Vegetation Index (NDVI) and the Soil Adjusted Vegetation Index (SAVI), based on reflectance in the red and near-infrared bands, are commonly used for this purpose. In this paper, we examine the effects of row crop orientation and soil background darkening due to shading and soil surface wetness on these two vegetation indices through modelling, coupled with a field experiment where canopy reflectance of a cotton crop at different solar zenith angles, was measured with a portable radiometer. The results show that the NDVI is significantly more affected than the SAVI by background shading and soil surface wetness, especially in north–south oriented rows at higher latitudes and could lead to a potential overestimation of crop evapotranspiration and irrigation water demand if used for basal crop coefficient estimation. Relationships between the analysed vegetation indices and canopy biophysical parameters such as crop height, fraction of cover and leaf area index also were developed for both indices.  相似文献   
210.
Biodiesel, a mixture of fatty acid methyl esters (FAMEs) derived from animal fats or vegetable oils, is rapidly moving towards the mainstream as an alternative source of energy. However, the behavior of biodiesel, or blends of biodiesel with fossil diesel, in the marine environment have yet to be fully understood. Hence, we performed a series of initial laboratory experiments and simple calculations to evaluate the microbial and environmental fate of FAMEs. Aerobic seawater microcosms spiked with biodiesel or mixtures of biodiesel and fossil diesel revealed that the FAMEs were degraded at roughly the same rate as n-alkanes, and more rapidly than other hydrocarbon components. The residues extracted from these different microcosms became indistinguishable within weeks. Preliminary results from physical-chemical calculations suggest that FAMEs in biodiesel mixtures will not affect the evaporation rates of spilled petroleum hydrocarbons but may stabilize oil droplets in the water column and thereby facilitate transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号