首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1334篇
  免费   75篇
  国内免费   9篇
测绘学   26篇
大气科学   123篇
地球物理   377篇
地质学   493篇
海洋学   101篇
天文学   233篇
综合类   4篇
自然地理   61篇
  2023年   8篇
  2022年   9篇
  2021年   17篇
  2020年   19篇
  2019年   21篇
  2018年   58篇
  2017年   46篇
  2016年   76篇
  2015年   50篇
  2014年   77篇
  2013年   111篇
  2012年   78篇
  2011年   84篇
  2010年   67篇
  2009年   82篇
  2008年   56篇
  2007年   49篇
  2006年   38篇
  2005年   56篇
  2004年   47篇
  2003年   28篇
  2002年   23篇
  2001年   17篇
  2000年   9篇
  1999年   11篇
  1998年   14篇
  1997年   12篇
  1996年   19篇
  1995年   20篇
  1994年   16篇
  1993年   8篇
  1992年   5篇
  1991年   7篇
  1990年   7篇
  1989年   6篇
  1988年   5篇
  1985年   9篇
  1984年   14篇
  1983年   14篇
  1982年   14篇
  1981年   19篇
  1980年   5篇
  1979年   9篇
  1978年   14篇
  1977年   8篇
  1975年   7篇
  1974年   4篇
  1973年   5篇
  1972年   5篇
  1969年   7篇
排序方式: 共有1418条查询结果,搜索用时 15 毫秒
41.
A clear model of structures and associated stress fields of a volcano can provide a framework in which to study and monitor activity. We propose a volcano-tectonic model for the dynamics of the summit of Piton de la Fournaise (La Reunion Island, Indian Ocean). The summit contains two main pit crater structures (Dolomieu and Bory), two active rift zones, and a slumping eastern sector, all of which contribute to the actual fracture system. Dolomieu has developed over 100 years by sudden large collapse events and subsequent smaller drops that include terrace formation. Small intra-pit collapse scars and eruptive fissures are located along the southern floor of Dolomieu. The western pit wall of Dolomieu has a superficial inward dipping normal fault boundary connected to a deeper ring fault system. Outside Dolomieu, an oval extension zone containing sub-parallel pit-related fractures extends to a maximum distance of 225 m from the pit. At the summit the main trend for eruptive fissures is N80°, normal to the north–south rift zone. The terraced structure of Dolomieu has been reproduced by analogue models with a roof to width ratio of approximately 1, suggesting an original magma chamber depth of about 1 km. Such a chamber may continue to act as a storage location today. The east flank has a convex–concave profile and is bounded by strike-slip fractures that define a gravity slump. This zone is bound to the north by strike-slip fractures that may delineate a shear zone. The southern reciprocal shear zone is probably marked by an alignment of large scoria cones and is hidden by recent aa lavas. The slump head intersects Dolomieu pit and may slide on a hydrothermally altered layer known to be located at a depth of around 300 m. Our model has the summit activity controlled by the pit crater collapse structure, not the rifts. The rifts become important on the mid-flanks of the cone, away from pit-related fractures. On the east flank the superficial structures are controlled by the slump. We suggest that during pit subsidence intra-pit eruptions may occur. During tumescence, however, the pit system may become blocked and a flank eruption is more likely. Intrusions along the rift may cause deformation that subsequently increases the slump’s potential to deform. Conversely, slumping may influence the east flank stress distribution and locally control intrusion direction. These predictions can be tested with monitoring data to validate the model and, eventually, improve monitoring.  相似文献   
42.
Sensitivity studies with regional climate models are often performed on the basis of a few simulations for which the difference is analysed and the statistical significance is often taken for granted. In this study we present some simple measures of the confidence limits for these types of experiments by analysing the internal variability of a regional climate model run over West Africa. Two 1-year long simulations, differing only in their initial conditions, are compared. The difference between the two runs gives a measure of the internal variability of the model and an indication of which timescales are reliable for analysis. The results are analysed for a range of timescales and spatial scales, and quantitative measures of the confidence limits for regional model simulations are diagnosed for a selection of study areas for rainfall, low level temperature and wind. As the averaging period or spatial scale is increased, the signal due to internal variability gets smaller and confidence in the simulations increases. This occurs more rapidly for variations in precipitation, which appear essentially random, than for dynamical variables, which show some organisation on larger scales.  相似文献   
43.
Interannual variability of subtropical sea-surface-height (SSH) anomalies, estimated by satellite and tide-gauge data, is investigated in relation to wintertime daily North-Atlantic weather regimes. Sea-level anomalies can be viewed as proxies for the subtropical gyre intensity because of the intrinsic baroclinic structure of the circulation. Our results show that the strongest correlation between SSH and weather regimes is found with the so-called Atlantic-Ridge (AR) while no significant values are obtained for the other regimes, including those related to the North Atlantic Oscillation (NAO), known as the primary actor of the Atlantic dynamics. Wintertime AR events are characterized by anticyclonic wind anomalies off Europe leading to a northward shift of the climatological wind-stress curl. The latter affects subtropical SSH annual variability by altered Sverdrup balance and ocean Rossby wave dynamics propagating westward from the African coast towards the Caribbean. The use of a simple linear planetary geostrophic model allows to quantify those effects and confirms the primary importance of the winter season to explain the largest part of SSH interannual variability in the Atlantic subtropical gyre. Our results open new perspectives in the comprehension of North-Atlantic Ocean variability emphasizing the role of AR as a driver of interannual variability at least of comparable importance to NAO.  相似文献   
44.
This study presents an analysis of climate-change impacts on the water resources of two basins located in northern France, by integrating four sources of uncertainty: climate modelling, hydrological modelling, downscaling methods, and emission scenarios. The analysis focused on the evolution of the water budget, the river discharges and piezometric heads. Seven hydrological models were used, from lumped rainfall-discharge to distributed hydrogeological models, and led to quite different estimates of the water-balance components. One of the hydrological models, CLSM, was found to be unable to simulate the increased water stress and was, thus, considered as an outlier even though it gave fair results for the present day compared to observations. Although there were large differences in the results between the models, there was a marked tendency towards a decrease of the water resource in the rivers and aquifers (on average in 2050 about ?14 % and ?2.5 m, respectively), associated with global warming and a reduction in annual precipitation (on average in 2050 +2.1 K and ?3 %, respectively). The uncertainty associated to climate models was shown to clearly dominate, while the three others were about the same order of magnitude and 3–4 times lower. In terms of impact, the results found in this work are rather different from those obtained in a previous study, even though two of the hydrological models and one of the climate models were used in both studies. This emphasizes the need for a survey of the climatic-change impact on the water resource.  相似文献   
45.
Two ten-members ensemble experiments using a coupled ocean-atmosphere general circulation model are performed to study the dynamical response to a strong westerly wind event (WWE) when the tropical Pacific has initial conditions favourable to the development of a warm event. In the reference ensemble (CREF), no wind perturbation is introduced, whereas a strong westerly wind event anomaly is introduced in boreal winter over the western Pacific in the perturbed ensemble (CWWE). Our results demonstrate that an intense WWE is capable of establishing the conditions under which a strong El Niño event can occur. First, it generates a strong downwelling Kelvin wave that generates a positive sea surface temperature (SST) anomaly in the central-eastern Pacific amplified through a coupled ocean-atmosphere interaction. This anomaly can be as large as 2.5°C 60 days after the WWE. Secondly, this WWE also initiates an eastward displacement of the warm-pool that promotes the occurrence of subsequent WWEs in the following months. These events reinforce the initial warming through the generation of additional Kelvin waves and generate intense surface jets at the eastern edge of the warm-pool that act to further shift warm waters eastward. The use of a ten-members ensemble however reveals substantial differences in the coupled response to a WWE. Whereas four members of CWWE ensemble develop into intense El Niño warming as described above, four others display a moderate warming and two remains in neutral conditions. This diversity between the members appears to be due to the internal atmospheric variability during and following the inserted WWE. In the four moderate warm cases, the warm-pool is initially shifted eastward following the inserted WWE, but the subsequent weak WWE activity (when compared to the strong warming cases) prevents to further shift the warm-pool eastwards. The seasonal strengthening of trade winds in June–July can therefore act to shift warm waters back into the western Pacific, reducing the central-eastern Pacific warming. This strong sensitivity of the coupled response to WWEs may therefore limit the predictability of El Niño events, as the high frequency wind variability over the warm pool region remains largely unpredictable even at short time lead.  相似文献   
46.
Two cases of simultaneous nighttime measurements of NO2 and OClO in the winter polar stratosphere are analyzed in order to test our present knowledge of halogen chemistry in the presence of high amount of NO2 at low temperature. Comparisons with Lagrangian model calculations using several hypotheses are performed. First simulations, using the admitted constant rates of chemical reaction, strongly underestimate the measured OClO while the NO2 profiles are correctly reproduced. If uncertainties in actinic fluxes calculations are taken into account, simulation results do not show a significant reduction of the underestimation. A better agreement can be achieved if the formation of unstable isomers of ClONO2 and of BrONO2 occurs in the cold conditions of the polar stratosphere. An approximate value of the branching ratios of the channels leading to ClONO2 and ClOONO, and to BrONO2 and BrOONO, necessary to reproduce both OClO and NO2 is given and discussed.  相似文献   
47.
48.
Abstract

Carbonyl sulphide (OCS) is an important precursor of sulphate aerosols and consequently a key species in stratospheric ozone depletion. The SPectromètre InfraRouge d'Absorption à Lasers Embarqués (SPIRALE) and shortwave infrared (SWIR) balloon-borne instruments have flown in the tropics and in the polar Arctic, and ground-based measurements have been performed by the Qualité de l'Air (QualAir) Fourier Transform Spectrometer in Paris. Partial and total columns and vertical profiles have been obtained to study OCS variability with altitude, latitude, and season. The annual total column variation in Paris reveals a seasonal variation with a maximum in April–June and a minimum in November–January. Total column measurements above Paris and from SWIR balloon-borne instrument are compared with several MkIV measurements, several Network for the Detection of Atmospheric Composition Change (NDACC) stations, aircraft, ship, and balloon measurements to highlight the OCS total column decrease from tropical to polar latitudes. OCS high-resolution in situ vertical profiles have been measured for the first time in the altitude range between 14 and 30?km at tropical and polar latitudes. OCS profiles are compared with Atmospheric Chemistry Experiment (ACE) satellite measurements and show good agreement. Using the correlation between OCS and N2O from SPIRALE, the OCS stratospheric lifetime has been accurately determined. We find a stratospheric lifetime of 68?±?20 years at polar latitudes and 58?±?14 years at tropical latitudes leading to a global stratospheric sink of 49?±?14?Gg?S?y?1.  相似文献   
49.
Surface temperature, precipitation, specific humidity and wind anomalies associated with the warm and cold phases of ENSO simulated by WRF and HadRM are examined for the present and future decades. WRF is driven by ECHAM5 and CCSM3, respectively, and HadRM is driven by HadCM3. For the current decades, all simulations show some capability in resolving the observed warm-dry and cool-wet teleconnection patterns over the PNW and the Southwest U.S. for warm and cold ENSO. Differences in the regional simulations originate primarily from the respective driving fields. For the future decades, the warm-dry and cool-wet teleconnection patterns in association with ENSO are still represented in ECHAM5-WRF and HadRM. However, there are indications of changes in the ENSO teleconnection patterns for CCSM3-WRF in the future, with wet anomalies dominating in the PNW and the Southwest U.S. for both warm and cold ENSO, in contrast to the canonical patterns of precipitation anomalies. Interaction of anomalous wind flow with local terrain plays a critical role in the generation of anomalous precipitation over the western U.S. Anomalous dry conditions are always associated with anomalous airflow that runs parallel to local mountains and wet conditions with airflow that runs perpendicular to local mountains. Future changes in temperature and precipitation associated with the ENSO events in the regional simulations indicate varying responses depending on the variables examined as well as depending on the phase of ENSO.  相似文献   
50.
The LMDZ4 general circulation model is the atmospheric component of the IPSL–CM4 coupled model which has been used to perform climate change simulations for the 4th IPCC assessment report. The main aspects of the model climatology (forced by observed sea surface temperature) are documented here, as well as the major improvements with respect to the previous versions, which mainly come form the parametrization of tropical convection. A methodology is proposed to help analyse the sensitivity of the tropical Hadley–Walker circulation to the parametrization of cumulus convection and clouds. The tropical circulation is characterized using scalar potentials associated with the horizontal wind and horizontal transport of geopotential (the Laplacian of which is proportional to the total vertical momentum in the atmospheric column). The effect of parametrized physics is analysed in a regime sorted framework using the vertical velocity at 500 hPa as a proxy for large scale vertical motion. Compared to Tiedtke’s convection scheme, used in previous versions, the Emanuel’s scheme improves the representation of the Hadley–Walker circulation, with a relatively stronger and deeper large scale vertical ascent over tropical continents, and suppresses the marked patterns of concentrated rainfall over oceans. Thanks to the regime sorted analyses, these differences are attributed to intrinsic differences in the vertical distribution of convective heating, and to the lack of self-inhibition by precipitating downdraughts in Tiedtke’s parametrization. Both the convection and cloud schemes are shown to control the relative importance of large scale convection over land and ocean, an important point for the behaviour of the coupled model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号