首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   531篇
  免费   29篇
  国内免费   2篇
测绘学   28篇
大气科学   93篇
地球物理   119篇
地质学   213篇
海洋学   27篇
天文学   44篇
综合类   3篇
自然地理   35篇
  2023年   2篇
  2022年   4篇
  2021年   7篇
  2020年   12篇
  2019年   9篇
  2018年   24篇
  2017年   29篇
  2016年   36篇
  2015年   20篇
  2014年   18篇
  2013年   33篇
  2012年   29篇
  2011年   33篇
  2010年   35篇
  2009年   35篇
  2008年   30篇
  2007年   27篇
  2006年   20篇
  2005年   22篇
  2004年   12篇
  2003年   9篇
  2002年   18篇
  2001年   15篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1997年   8篇
  1996年   3篇
  1995年   8篇
  1994年   6篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1988年   3篇
  1987年   3篇
  1984年   2篇
  1982年   2篇
  1981年   3篇
  1978年   2篇
  1977年   6篇
  1970年   1篇
  1969年   1篇
  1965年   1篇
  1961年   1篇
  1960年   1篇
  1958年   1篇
  1953年   1篇
  1951年   1篇
  1950年   1篇
  1948年   1篇
排序方式: 共有562条查询结果,搜索用时 15 毫秒
481.
Two coeval stalagmites from Katerloch Cave show pronounced intervals of low δ18O values around 8.2, 9.1, and 10.0 kyr (all ages are reported before the year 2000 AD) and represent an inorganic U–Th dated climate archive from the southeast of the European Alps, a region where only very few well-dated climate records exist. The O isotope curves, providing near-annual resolution, allow a direct comparison to the Greenland ice core records, as temperature was the primary factor controlling the O isotopic composition of Katerloch speleothems.The 8.2 kyr climate anomaly lasted about one century, from 8196 to 8100 yr, with a maximum amplitude of 1.1‰ at 8175 yr. The event is characterized by a rapid onset and a more gradual demise and U–Th data as well as annual lamina counting support a rapid climate change towards cooler conditions within 10–20 yr. There is no strong evidence that the 8.2 kyr anomaly was superimposed on a pronounced longer-term cooling episode, nor do the new data support two separate cooling events within the 8.2 kyr event as reported by other studies. Our record also shows a distinct climate anomaly around 9.1 kyr, which lasted 70–110 yr and showed a maximum amplitude of 1.0‰, i.e. it had a similar duration and amplitude as the (central) 8.2 kyr event. Compared to the 8.2 kyr event, the 9.1 kyr anomaly shows a more symmetrical structure, but onset and demise still occurred within a few decades only. The different progression of the 8.2 (asymmetrical) and 9.1 kyr anomaly (symmetrical) suggests a fundamental difference in the trigger and/or the response of the climate system. Moreover, both stalagmites show evidence of a climate anomaly around 10.0 kyr, which was of comparable magnitude to the two subsequent events.Using a well constrained modern calibration between air temperature and δ18O of precipitation for the study area and cave monitoring data (confirming speleothem deposition in Katerloch reflecting cave air temperature), a maximum cooling by ca 3 °C can be inferred at 8.2 and 9.1 kyr, which is similar to other estimates, e.g., from Lake Ammersee north of the Alps. The O isotopic composition of meteoric precipitation, however, is a complex tracer of the hydrological cycle and these temperature estimates do not take into account additional effects such as changes in the source area or synoptic shifts. Apart from that, the relative thickness of the seasonally controlled lamina types in the Katerloch stalagmites remains rather constant across the intervals comprising the isotopic anomalies, i.e. the stalagmite petrography argues against major shifts in seasonality during the early Holocene climate excursions.  相似文献   
482.
A three-dimensional ecosystem model for the North Sea which includes competition between Pseudocalanus elongatus and the rest of the zooplankton biomass was applied to describe the seasonal cycle of zooplankton in 2003–2004. The paper presents the comparison of simulated stage-resolved abundances with copepod counts at several stations in the German Bight during the GLOBEC-Germany project from February to October 2004. A validation of influential state variables gives confidence that the model is able to calculate reliably the stage development and abundances of P. elongatus as well as the range of bulk zooplankton biomass, and thus the ratio of population biomass to total biomass. In the German Bight, the population is below 20% in spring. The ratio increases up to 50% during summer. The number of generations was estimated from peaks in egg abundance to about 4–8 generations of P. elongatus in the southern North Sea. A mean of four generations per year were estimated in the central North Sea, six to eight generations northwest of the Dogger Bank (tails end) and five generations in the German Bight.  相似文献   
483.
Gravity cores obtained from isolated seamounts located within, and rising up to 300 m from the sediment-filled Peru–Chile Trench off Southern Central Chile (36°S–39°S) contain numerous turbidite layers which are much coarser than the hemipelagic background sedimentation. The mineralogical composition of some of the beds indicates a mixed origin from various source terrains while the faunal assemblage of benthic foraminifera in one of the turbidite layers shows a mixed origin from upper shelfal to middle-lower bathyal depths which could indicate a multi-source origin and therefore indicate an earthquake triggering of the causing turbidity currents. The bathymetric setting and the grain size distribution of the sampled layers, together with swath echosounder and sediment echosounder data which monitor the distribution of turbidites on the elevated Nazca Plate allow some estimates on the flow direction, flow velocity and height of the causing turbidity currents. We discuss two alternative models of deposition, both of which imply high (175–450 m) turbidity currents and we suggest a channelized transport process as the general mode of turbidite deposition. Whether these turbidites are suspension fallout products of thick turbiditic flows or bedload deposits from sheet-like turbidity currents overwhelming elevated structures cannot be decided upon using our sedimentological data, but the specific morphology of the seamounts rather argues for the first option. Oxygen isotope stratigraphy of one of the cores indicates that the turbiditic sequences were deposited during the last Glacial period and during the following transition period and turbiditic deposition stopped during the Holocene. This climatic coupling seems to be dominant, while the occurrence of megathrust earthquakes provides a trigger mechanism. This seismic triggering takes effect only during times of very high sediment supply to the shelf and slope.  相似文献   
484.
We found a large (~2 mm) compound object in the primitive Yamato 793408 (H3.2‐an) chondrite. It consists mostly of microcrystalline material, similar to chondrule mesostasis, that hosts an intact barred olivine (BO) chondrule. The object contains euhedral pyroxene and large individual olivine grains. Some olivine cores are indicative of refractory forsterites with very low Fe‐ and high Ca, Al‐concentrations, although no 16O enrichment. The entire object is most likely a new and unique type, as no similar compound object has been described so far. We propose that it represents an intermediate stage between compound chondrules and macrochondrules, and formed from the collision between chondrules at low velocities (below 1 m s?1) at high temperatures (around 1550 °C). The macrochondrule also trapped and preserved a smaller BO chondrule. This object appears to be the first direct evidence for a genetic link between compound chondrules and macrochondrules. In accordance with previous suggestions and studies, compound chondrules and macrochondrules likely formed by the same mechanism of chondrule collisions, and each represents different formation conditions, such as ambient temperature and collision speed.  相似文献   
485.
In the spawning environment of salmonids, the quality of the intergravel flow is an essential abiotic requirement for the survival success of incubated embryos. As one of the most frequently investigated anthropogenic environmental impacts, the enhanced mobilization of fine sediments (<1 mm) and their entry into riverine ecosystems is considered as a major cause for the degradation of a variety of biological processes and habitats, including the spawning habitats of salmonids. In catchments draining crystalline bedrock, however, like the Bohemian Massif in the northern part of Austria, the excessive loading of river channels with coarse sand and fine gravel sediments (D = 1–10 mm) and less cohesive than fines is common as a consequence of altered catchment land use. Here, far less understanding exists of the mechanism and the possible implications of coarse sand infiltration on the functioning of the intergravel flow in salmonid redds. To investigate the intergravel flow hydraulics in response to coarse sand infiltration (D50 = 2 mm) in brown trout spawning redds (Salmo trutta fario ) under controlled conditions, a laboratory flume experiment with three infiltration scenarios was conducted: (1) no infiltration; (2) segmental infiltration; and (3) full section infiltration. A more than two times drop in the average intergravel flow velocity was documented from scenario 1 (5.85 cms?1) to scenario 2 (2.53 cms?1) and another clear reduction was seen from scenario 2 (2.53 cms?1) to scenario 3 (1.61 cms?1). Moreover, in scenario 3, a clear reduction of the intergravel flow distance traveled was observed. Based on the findings we conclude that future considerations regarding the sustainable catchment management of salmonid fisheries should include programs to reduce not only the excessive entry of fines, but, in the relevant catchments, also the entry of excessive coarse sand into the riverine ecosystem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
486.
This article introduces one of South Asia's most important border regions into academic discourse, namely, the Central Himalayan mountain rim separating India and the Tibetan Autonomous Region (People's Republic of China). What makes this border region so interesting is a tangled interplay of changing environmental, cultural, and political forms to which the local populations constantly have to adapt in order to make a living there. We focused on the so-called 'Bhotiyas' of Uttarakhand, former trans- Himalayan traders whose ethnicity and livelihood was traditionally associated with the Indo-Chinese border that was sealed as a result of the India-China war in 1962. Drawing on the work of borderland scholarship, we identified the key processes and developments that changed the perspective of this area. Competing political aspirations as well as the 'Bhotiyas' countervailing strategies were considered equally important for understanding local livelihoods and identities within the dynamics of a 'high mountain border region'. Through an exemplary analysis of historical differences of power in one 'Bhotiya' valley, we further explored the ways in which shifting socio-spatial constellations are creatively re-interpreted by the borderlanders.  相似文献   
487.
Sediment budgeting concepts serve as quantification tools to decipher the erosion and accumulation processes within a catchment and help to understand these relocation processes through time. While sediment budgets are widely used in geomorphological catchment-based studies, such quantification approaches are rarely applied in geoarchaeological studies. The case of Charlemagne's summit canal (also known as Fossa Carolina) and its erosional collapse provides an example for which we can use this geomorphological concept and understand the abandonment of the Carolingian construction site. The Fossa Carolina is one of the largest hydro-engineering projects in Medieval Europe. It is situated in Southern Franconia (48.9876°N, 10.9267°E; Bavaria, southern Germany) between the Altmühl and Swabian Rezat rivers. It should have bridged the Central European watershed and connected the Rhine–Main and Danube river systems. According to our dendrochronological analyses and historical sources, the excavation and construction of the Carolingian canal took place in AD 792 and 793. Contemporary written sources describe an intense backfill of excavated sediment in autumn AD 793. This short-term erosion event has been proposed as the principal reason for the collapse and abandonment of the hydro-engineering project. We use subsurface data (drillings, archaeological excavations, and direct-push sensing) and geospatial data (a LiDAR digital terrain model (DTM), a pre-modern DTM, and a 3D model of the Fossa Carolina] for the identification and sediment budgeting of the backfills. Dendrochronological findings and radiocarbon ages of macro remains within the backfills give clear evidence for the erosional collapse of the canal project during or directly after the construction period. Moreover, our quantification approach allows the detection of the major sedimentary collapse zone. The exceedance of the manpower tipping point may have caused the abandonment of the entire construction site. The spatial distribution of the dendrochronological results indicates a north–south direction of the early medieval construction progress. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
488.
A three-point differencing scheme for the diffusion–convection equation is presented that offers all the advantages of both the central and the one-sided ('upwind') differencing scheme without suffering from their drawbacks. Specifically, the scheme is conservative, unconditionally stable, and second-order-accurate in space. It is free of oscillations and over- or undershoots, simple to code, and requires essentially no more computing time than the one-sided scheme. Although known for a relatively long time in numerical mathematics, the scheme apparently has not received sufficient attention from modellers of hydrothermal systems or contaminant transport in the geosciences. In order to fill this gap a comparison is made between this scheme and the widely used one-sided scheme for the transient diffusion–convection equation in different time discretizations. The results are discussed taking into account other approaches towards minimizing numerical diffusion.  相似文献   
489.
Current conceptual runoff models hypothesize that stormflow generation on the Canadian Shield is a combination of subsurface stormflow and saturation overland flow. This concept was tested during spring runoff in a small (3.3 ha) headwater basin using: (1) isotopic and chemical hydrograph separation and (2) field mapping and direct tracing of saturated areas. Isotopic and chemical hydrograph separation indicated three runoff components: (1) pre-melt subsurface flow; (2) subsurface flow of new (event) water; and (3) direct precipitation on to saturated areas (DPS). During early thaw-freeze cycles, their relative contributions to total flow remained constant (65 per cent, 30 per cent, and 5 per cent respectively). It is hypothesized that lateral flow along the bedrock/mineral soil interface, possibly through macropores, supplied large volumes of subsurface flow (of both old and new water) rapidly to the stream channel. Much higher contributions of DPS were observed during an intensive rain-on-snow event (15 per cent of total flow). Mapping and direct tracing of saturated areas using lithium bromide, suggested that saturated area size was positively correlated to stream discharge but its response lagged behind that of discharge. These observations suggest that the runoff mechanisms, and hence the sources of stream flow, will vary depending on storm characteristics.  相似文献   
490.
The oldest non-metamorphic sediments of northern Chile (21?–27?S) are of Early Ordovician age. The partly strong volcanic influence in the clastic series of the Pre-Cordillera and the Puna might be connected with the extensive Ordovician magmatism on the eastern side of the Argentinian Puna. The geochemical character of the tholeiitic intercalations in the pelites and turbidites of the »Complejo Igneo-Sedimentario del Cordon de Lila« (C.I.S.L.) in the Pre-Andean Depression indicates a ?Lower Ordovician extensional regime in this area. A positive area (»Arco Puneño«) encompassing the whole width of the present-day western Central Andes developed during the subsequent orogenic phase (»Fase Oclóyica«), resulting in the absence of Silurian strata in Northern Chile. During the Devonian/Carboniferous, two areas of marine facies can be distinguished. In the Coastal Cordillera thick flysch sediments were deposited longitudinally in a N-S striking trough. In the east, in what is now the Pre-Andean Depression and High Cordillera, thick sandstone series accumulated on the western shelf of the Arco Puneno. Carboniferous tectonic movements led to the formation of a shallow marine platform in the west on which clastic sediments, limestones and volcanics were deposited during the Upper Carboniferous-Permian. Simultaneously, extensive volcanism developed in the Pre- and High Cordillera accompanied by predominantly terrestrial sedimentation. A general westward migration of the orogenic zones took place along with repeated phases of rifting and accretion in the Central Andes during the Paleozoic. Eastward directed erosive subduction prevailed since the breakup of Pangea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号