首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   532篇
  免费   29篇
  国内免费   5篇
测绘学   28篇
大气科学   93篇
地球物理   119篇
地质学   217篇
海洋学   27篇
天文学   44篇
综合类   3篇
自然地理   35篇
  2023年   3篇
  2022年   4篇
  2021年   7篇
  2020年   13篇
  2019年   9篇
  2018年   24篇
  2017年   29篇
  2016年   37篇
  2015年   20篇
  2014年   18篇
  2013年   33篇
  2012年   29篇
  2011年   33篇
  2010年   35篇
  2009年   35篇
  2008年   30篇
  2007年   27篇
  2006年   20篇
  2005年   22篇
  2004年   12篇
  2003年   9篇
  2002年   18篇
  2001年   15篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1997年   8篇
  1996年   3篇
  1995年   8篇
  1994年   6篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1988年   3篇
  1987年   3篇
  1984年   2篇
  1982年   2篇
  1981年   3篇
  1978年   2篇
  1977年   6篇
  1970年   1篇
  1969年   1篇
  1965年   1篇
  1961年   1篇
  1960年   1篇
  1958年   1篇
  1953年   1篇
  1951年   1篇
  1950年   1篇
  1948年   1篇
排序方式: 共有566条查询结果,搜索用时 0 毫秒
331.
This paper describes the coupling between a mesoscale numerical weather prediction model, the Weather Research and Forecasting (WRF) model, and a Lagrangian Particle Dispersion Model, the Stochastic Time-Inverted Lagrangian Transport (STILT) model. The primary motivation for developing this coupled model has been to reduce transport errors in continental-scale top–down estimates of terrestrial greenhouse gas fluxes. Examples of the model’s application are shown here for backward trajectory computations originating at CO2 measurement sites in North America. Owing to its unique features, including meteorological realism and large support base, good mass conservation properties, and a realistic treatment of convection within STILT, the WRF–STILT model offers an attractive tool for a wide range of applications, including inverse flux estimates, flight planning, satellite validation, emergency response and source attribution, air quality, and planetary exploration.  相似文献   
332.
Airborne, light detection and ranging (lidar) backscatter observations of the convective boundary layer from the International H2O Project (IHOP) in 2002 are analysed to study the structure of the transition zone; the backscatter gradient between the convective boundary layer and free atmosphere. A new mathematical algorithm is developed and used to extract high-resolution (15 m) transition-zone boundaries from 6,500 km (flight legs) of airborne observations. The cospectra of transition-zone boundaries and its thickness indicate that thickness changes occur from boundaries moving in opposite directions (vertically) at small wavelengths (<1 km), while at longer wavelengths (>1 km) both boundaries move coherently, with the lower boundary changing altitude more rapidly. Daily probability distributions of the transition-zone thickness are positively skewed with a mode of 60 m. The structure of the transition zone shows no dependence on the “overall” Richardson number, unlike the entrainment zone. This study provides the first quantitative characterization of the structure of the instantaneous transition zone, a contribution towards an improved understanding of convective boundary-layer entrainment.  相似文献   
333.
Current climate change projections are based on comprehensive multi-model ensembles of global and regional climate simulations. Application of this information to impact studies requires a combined probabilistic estimate taking into account the different models and their performance under current climatic conditions. Here we present a Bayesian statistical model for the distribution of seasonal mean surface temperatures for control and scenario periods. The model combines observational data for the control period with the output of regional climate models (RCMs) driven by different global climate models (GCMs). The proposed Bayesian methodology addresses seasonal mean temperatures and considers both changes in mean temperature and interannual variability. In addition, unlike previous studies, our methodology explicitly considers model biases that are allowed to be time-dependent (i.e. change between control and scenario period). More specifically, the model considers additive and multiplicative model biases for each RCM and introduces two plausible assumptions (“constant bias” and “constant relationship”) about extrapolating the biases from the control to the scenario period. The resulting identifiability problem is resolved by using informative priors for the bias changes. A sensitivity analysis illustrates the role of the informative prior. As an example, we present results for Alpine winter and summer temperatures for control (1961–1990) and scenario periods (2071–2100) under the SRES A2 greenhouse gas scenario. For winter, both bias assumptions yield a comparable mean warming of 3.5–3.6°C. For summer, the two different assumptions have a strong influence on the probabilistic prediction of mean warming, which amounts to 5.4°C and 3.4°C for the “constant bias” and “constant relation” assumptions, respectively. Analysis shows that the underlying reason for this large uncertainty is due to the overestimation of summer interannual variability in all models considered. Our results show the necessity to consider potential bias changes when projecting climate under an emission scenario. Further work is needed to determine how bias information can be exploited for this task.  相似文献   
334.
Regime-dependent evaluation is a relatively new approach to assess model performance. It consists of classifying the model biases according to a discrete number of regimes and evaluating model output within each regime. In this paper, the regimes are firstly defined by the large-scale atmospheric circulation, based on the objective Jenkinson-Collison classification technique which distinguishes synoptic patterns by strength, direction and vorticity of the geostrophic flow. Eight directional and two vorticity circulation regimes (circulation types) are specified. In this way, it is possible to quantify the model performance for cases with for example westerly winds only, or with cyclonic circulation only. A second regime classification is based on temperature, which allows for detection of temperature-dependent model performance. Modelled accumulated precipitation (mm/6?h) is evaluated with rain gauges for the years 2007 and 2008. Two variants of the COSMO model are evaluated: a fine-resolution version (2.8?km, COSMO-DE) and a coarse-resolution version (7?km, COSMO-EU). In COSMO-EU, a windward/leeward effect becomes visible since circulation is related to dominant wind direction, hence to windward and lee side of orography. In COSMO-DE, no circulation dependent but a height-related bias is identified and further explored, making use of temperature-dependent evaluation which unveils a positive model bias related to solid precipitation.  相似文献   
335.
The Red Sea represents an extreme marine environment, with high salinity, high temperature and low level of nutrients, complicating the application of standard geochemical palaeotemperature proxies. In order to investigate the applicability of the TEX86 (TetraEther indeX of GDGTs with 86 carbons) proxy for sea surface temperature (SST) in the Red Sea, the distribution of glycerol dialkyl glycerol tetraether membrane lipids (GDGTs) in sediments from the Red Sea and the Gulf of Aden were examined. Against expectations, TEX86 values for the Red Sea do not show a simple linear relationship with SST and deviate from the global core top calibration. In the northern Red Sea, at temperatures between 25 and 28 °C, the values increase linearly with SST, whereas in the southern Red Sea, at temperatures above 28 °C, TEX86 decreases with increasing temperature. Factors like seasonality and depth of production, salinity and nutrient availability, as well as diagenetic overprint or influence of allochtonous terrestrial lipids, cannot explain this pattern. However, the observed TEX86 relationship with SST could be explained by the presence of a hypothetical endemic Crenarchaeota population in the Red Sea with a specific TEX86 vs. SST relationship. In the Southern Red Sea, a two-component mixing model implies an exponential decrease in the endemic population towards the Gulf of Aden. Thus, the application of the TEX86 as a palaeotemperature proxy in the Red Sea is likely only possible for the northern Red Sea area with the specific SST vs. TEX86 relationship determined in this study and potentially for the whole Red Sea basin during glacials, when water exchange with the Indian Ocean was more restricted than today and the endemic archaeal lipid distribution was not affected by transport from the Indian Ocean. Our results suggest that distinct populations of Crenarchaeota in extreme environments such as evaporitic basins may have different membrane composition, necessitating application of another calibration than the global core top calibration for TEX86 palaeothermometry.  相似文献   
336.
Conventional methods of palaeoclimate reconstruction provide estimates of climatic parameters using proxy data which have originated from individual sites. These reconstructions yield information on the local environment but only limited information on spatial scales that are required for model-data intercomparisons. We present here a new approach that connects these different scales by an upscaling of the local palaeoinformation together with a dynamically consistent spatial smoothing. A probabilistic data-based method for local reconstructions is combined with a dynamic constraint on the reconstructed climate parameter which stabilises the reconstruction on the target scale. The variational analysis leads to climatological fields being optimised with respect to the proxy data and to the prescribed dynamics in a statistically consistent way. This method allows a probabilistic approach of quality control of the palaeodata in terms of their spatial consistency and homogeneity and for an estimation of reconstruction errors. The method was applied to palaeobotanical data to reconstruct near-surface temperature fields constrained by simple linear dynamics. An approximate approach was used to estimate the magnitude of reconstruction errors in terms of standard deviations. Reconstructed January and July mean temperature of the early Eemian (∼ 125,000 years bp) have errors with a median value of about 1.8°C in January and about 1.1°C in July. Reconstructions across Europe show positive temperature anomalies for Scandinavia and near the East coast of the Baltic Sea. In contrast, early Eemian temperatures were apparently quite similar to those found today in Central Europe, as no drastic differences were reconstructed between the Eemian and modern (1961–1990) climate. This implies somewhat stronger temperature gradients in the Eemian than are observed today. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
337.
Several drill cores were obtained from a laminated, actively forming flowstone from a shallow cave in Austria. Highly resolved petrographic and geochemical analyses combined with multi‐annual cave monitoring reveal a distinct sensitivity of flowstone growth and composition to late Holocene meteoric precipitation. The regular sub‐millimetre‐scale lamination consists of thicker, translucent laminae and thinner (organic) inclusion‐rich laminae. There is also a macroscopic millimetre‐scale banding of darker and lighter bands comprising several laminae. Stable isotope analyses of drill cores and modern calcite precipitates show a pronounced positive covariation of δ13C and δ18O values indicative of kinetic isotope effects. Comparing the isotope values with petrography shows gradual changes across several of the annual laminae, i.e. changes of several per mille on a multi‐annual to decadal timescale. The stable isotope and trace‐element composition, as well as the flowstone petrography, are mainly controlled by the variable drip‐water discharge controlling the water‐film thickness and water residence time on the flowstone surface and consequently the intensity of CO2‐degassing, kinetic isotope enrichment and concomitant calcite precipitation. Drill core PFU6 provides an isotope record of the last ca. 3000 years at near‐annual resolution. A distinct phase of low C and O isotope values – interpreted as increased discharge and hence higher meteoric precipitation – occurred from ca. 300 to 140 a b2k (second half of the Little Ice Age) and another wet interval occurred around 700 a, corresponding to reported Medieval glacier advances. The Roman Warm Period was also dominated by relatively wet conditions, although significant decadal variability prevailed. Increased precipitation further characterized the intervals from ca. 2480 to 2430 and 2950 to 2770 a. Dry conditions persisted during the Medieval Climate Anomaly, although this trend towards reduced precipitation started earlier. The highest C isotope values of the last 2 ka are recorded around 750 a and another dry phase is centred at 1480 a. This new record shows that inter‐annual to decadal oscillations are a dominant mode of variation during the last 3 ka in the Alps. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
338.
Glacial denudation can significantly perturb terrestrial cosmogenic nuclide depth profiles and, if this is not corrected for, derived apparent denudation rates will overestimate the actual denudation rates. Here we determine how much 10Be‐derived denudation rates – calculated under the assumption of steady state – deviate from actual denudation rates as a function of three parameters: (1) the total amount of glacial denudation, (2) the post‐glacial denudation rate and (3) the time elapsed since deglaciation. We provide correction lines for the full parameter space explored (glacial denudation: 0.01–100 m; post‐glacial denudation rate: 1–1000 mm/ka; deglaciation: 1–100 ka before present), to evaluate and, if necessary, correct denudation rates for the impact of glacial denudation. Applied to 10Be‐derived catchment‐averaged denudation rates for formerly glaciated catchments in the Black Forest, Germany, we find that uncorrected denudation rates overestimate actual rates by up to a factor of three.  相似文献   
339.
Groundwater is the principal water resource in semi‐arid and arid environments. Therefore, quantitative estimates of its replenishment rate are important for managing groundwater systems. In dry regions, karst outcrops often show enhanced recharge rates compared with other surface and sub‐surface conditions. Areas with exposed karst features like sinkholes or open shafts allow point recharge, even from single rainfall events. Using the example of the As Sulb plateau in Saudi Arabia, this study introduces a cost‐effective and robust method for recharge monitoring and modelling in karst outcrops. The measurement of discharge of a representative small catchment (4.0 · 104 m2) into a sinkhole, and hence the direct recharge into the aquifer, was carried out with a time‐lapse camera. During the monitoring period of two rainy seasons (autumn 2012 to spring 2014), four recharge events were recorded. Afterwards, recharge data as well as proxy data about the drying of the sediment cover are used to set up a conceptual water balance model. The model was run for 17 years (1971 to 1986 and 2012 to 2014). Simulation results show highly variable seasonal recharge–precipitation ratios between 0 and 0.27. In addition to the amount of seasonal precipitation, this ratio is influenced by the interannual distribution of rainfall events. Overall, an average annual groundwater recharge for the doline (sinkhole) catchment on As Sulb plateau of 5.1 mm has estimated for the simulation period. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
340.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号