首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   529篇
  免费   29篇
  国内免费   2篇
测绘学   28篇
大气科学   93篇
地球物理   119篇
地质学   211篇
海洋学   27篇
天文学   44篇
综合类   3篇
自然地理   35篇
  2023年   2篇
  2022年   4篇
  2021年   7篇
  2020年   12篇
  2019年   9篇
  2018年   24篇
  2017年   29篇
  2016年   36篇
  2015年   20篇
  2014年   18篇
  2013年   33篇
  2012年   29篇
  2011年   33篇
  2010年   35篇
  2009年   35篇
  2008年   30篇
  2007年   27篇
  2006年   20篇
  2005年   22篇
  2004年   12篇
  2003年   9篇
  2002年   18篇
  2001年   15篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1997年   8篇
  1996年   3篇
  1995年   7篇
  1994年   6篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1988年   3篇
  1987年   3篇
  1984年   2篇
  1982年   2篇
  1981年   3篇
  1978年   2篇
  1977年   6篇
  1970年   1篇
  1969年   1篇
  1965年   1篇
  1961年   1篇
  1960年   1篇
  1958年   1篇
  1953年   1篇
  1951年   1篇
  1950年   1篇
  1948年   1篇
排序方式: 共有560条查询结果,搜索用时 31 毫秒
481.
Cosmogenic isotope (36Cl) surface exposure dating of four of the erratic boulders at Norber in the Yorkshire Dales National Park, northwest England, yielded mean ages of ∼22.2 ± 2.0 ka BP and ∼18.0 ± 1.6 ka BP for their emplacement. These two mean values derive from different 36Cl production rates used for exposure age calculation. The ages are uncorrected for temporal variations in production rates and may underestimate the true ages by 5-7%. The former age, although implying early deglaciation for this area of the British ice sheet, is not incompatible with minimum deglaciation ages from other contexts and locations in northwest England. However, the latter age is more consistent with the same minimum deglaciation ages and geochronological evidence for ice-free conditions in parts of the northern sector of the Irish Sea. Within uncertainties, the younger of the mean ages from Norber may indicate that boulder emplacement was associated with North Atlantic Heinrich event 1. The limited spatial (downvalley) extent of the Norber boulders implies that at the time of their deposition the ice margin was coincident with the distal margin of the erratic train. Loss of ice cover at Norber was followed by persistent stadial conditions until the abrupt opening of the Lateglacial Interstadial when large carnivorous mammals colonised the area. The 36Cl ages are between ∼3.0 ka and ∼13.0 ka older than previous estimates based on rates of limestone dissolution derived from the heights of pedestals beneath the erratics.  相似文献   
482.
Soil contamination by heavy metals and organic pollutants around industrial premises is a problem in many countries around the world. Delineating zones where pollutants exceed tolerable levels is a necessity for successfully mitigating related health risks. Predictions of pollutants are usually required for blocks because remediation or regulatory decisions are imposed for entire parcels. Parcel areas typically exceed the observation support, but are smaller than the survey domain. Mapping soil pollution therefore involves a local change of support. The goal of this work is to find a simple, robust, and precise method for predicting block means (linear predictions) and threshold exceedance by block means (nonlinear predictions) from data observed at points that show a spatial trend. By simulations, we compared the performance of universal block kriging (UK), Gaussian conditional simulations (CS), constrained (CK), and covariance-matching constrained kriging (CMCK), for linear and nonlinear local change of support prediction problems. We considered Gaussian and positively skewed spatial processes with a nonstationary mean function and various scenarios for the autocorrelated error. The linear predictions were assessed by bias and mean square prediction error and the nonlinear predictions by bias and Peirce skill scores.  相似文献   
483.
Information on water balance components such as evapotranspiration and groundwater recharge are crucial for water management. Due to differences in physical conditions, but also due to limited budgets, there is not one universal best practice, but a wide range of different methods with specific advantages and disadvantages. In this study, we propose an approach to quantify actual evapotranspiration, groundwater recharge and water inflow, i.e. precipitation and irrigation, that considers the specific conditions of irrigated agriculture in warm, arid environments. This approach does not require direct measurements of precipitation or irrigation quantities and is therefore suitable for sites with an uncertain data basis. For this purpose, we combine soil moisture and energy balance monitoring, remote sensing data analysis and numerical modelling using Hydrus. Energy balance data and routine weather data serve to estimate ET0. Surface reflectance data from satellite images (Sentinel-2) are used to derive leaf area indices, which help to partition ET0 into energy limited evaporation and transpiration. Subsequently, first approximations of water inflow are derived based on observed soil moisture changes. These inflow estimates are used in a series of forward simulations that produce initial estimates of drainage and ETact, which in turn help improve the estimate of water inflow. Finally, the improved inflow estimates are incorporated into the model and then a parameter optimization is performed using the observed soil moisture as the reference figure. Forward simulations with calibrated soil parameters result in final estimates for ETact and groundwater recharge. The presented method is applied to an agricultural test site with a crop rotation of cotton and wheat in Punjab, Pakistan. The final model results, with an RMSE of 2.2% in volumetric water content, suggest a cumulative ETact and groundwater recharge of 769 and 297 mm over a period of 281 days, respectively. The total estimated water inflow accounts for 946 mm, of which 77% originates from irrigation.  相似文献   
484.
We present a novel approach based on fibre-optic distributed temperature sensing (DTS) to measure the two-dimensional thermal structure of the surface layer at high resolution (0.25 m, ≈0.5 Hz). Air temperature observations obtained from a vertically-oriented fibre-optics array of approximate dimensions 8 m × 8 m and sonic anemometer data from two levels were collected over a short grass field located in the flat bottom of a wide valley with moderate surface heterogeneity. The objectives of the study were to evaluate the potential of the DTS technique to study small-scale processes in the surface layer over a wide range of atmospheric stability, and to analyze the space–time dynamics of transient cold-air pools in the calm boundary layer. The time response and precision of the fibre-based temperatures were adequate to resolve individual sub-metre sized turbulent and non-turbulent structures, of time scales of seconds, in the convective, neutral, and stable surface layer. Meaningful sensible heat fluxes were computed using the eddy-covariance technique when combined with vertical wind observations. We present a framework that determines the optimal environmental conditions for applying the fibre-optics technique in the surface layer and identifies areas for potentially significant improvements of the DTS performance. The top of the transient cold-air pool was highly non-stationary indicating a superposition of perturbations of different time and length scales. Vertical eddy scales in the strongly stratified transient cold-air pool derived from the DTS data agreed well with the buoyancy length scale computed using the vertical velocity variance and the Brunt–Vaisala frequency, while scales for weak stratification disagreed. The high-resolution DTS technique opens a new window into spatially sampling geophysical fluid flows including turbulent energy exchange.  相似文献   
485.
We consider the Sitnikov problem; from the equations of motion we derive the approximate Hamiltonian flow. Then, we introduce suitable action–angle variables in order to construct a high order normal form of the Hamiltonian. We introduce Birkhoff Cartesian coordinates near the elliptic orbit and we analyze the behavior of the remainder of the normal form. Finally, we derive a kind of local stability estimate in the vicinity of the periodic orbit for exponentially long times using the normal form up to 40th order in Cartesian coordinates.  相似文献   
486.
Anthropogenic greenhouse gas emissions are expected to lead to more frequent and intense summer temperature extremes, not only due to the mean warming itself, but also due to changes in temperature variability. To test this hypothesis, we analyse daily output of ten PRUDENCE regional climate model scenarios over Europe for the 2071–2100 period. The models project more frequent temperature extremes particularly over the Mediterranean and the transitional climate zone (TCZ, between the Mediterranean to the south and the Baltic Sea to the north). The projected warming of the uppermost percentiles of daily summer temperatures is found to be largest over France (in the region of maximum variability increase) rather than the Mediterranean (where the mean warming is largest). The underlying changes in temperature variability may arise from changes in (1) interannual temperature variability, (2) intraseasonal variability, and (3) the seasonal cycle. We present a methodology to decompose the total daily variability into these three components. Over France and depending upon the model, the total daily summer temperature variability is projected to significantly increase by 20–40% as a result of increases in all three components: interannual variability (30–95%), seasonal variability (35–105%), and intraseasonal variability (10–30%). Variability changes in northern and southern Europe are substantially smaller. Over France and parts of the TCZ, the models simulate a progressive warming within the summer season (corresponding to an increase in seasonal variability), with the projected temperature change in August exceeding that in June by 2–3 K. Thus, the most distinct warming is superimposed upon the maximum of the current seasonal cycle, leading to a higher intensity of extremes and an extension of the summer period (enabling extreme temperatures and heat waves even in September). The processes driving the variability changes are different for the three components but generally relate to enhanced land–atmosphere coupling and/or increased variability of surface net radiation, accompanied by a strong reduction of cloudiness, atmospheric circulation changes and a progressive depletion of soil moisture within the summer season. The relative contribution of these processes differs substantially between models.  相似文献   
487.
488.
A three-point differencing scheme for the diffusion–convection equation is presented that offers all the advantages of both the central and the one-sided ('upwind') differencing scheme without suffering from their drawbacks. Specifically, the scheme is conservative, unconditionally stable, and second-order-accurate in space. It is free of oscillations and over- or undershoots, simple to code, and requires essentially no more computing time than the one-sided scheme. Although known for a relatively long time in numerical mathematics, the scheme apparently has not received sufficient attention from modellers of hydrothermal systems or contaminant transport in the geosciences. In order to fill this gap a comparison is made between this scheme and the widely used one-sided scheme for the transient diffusion–convection equation in different time discretizations. The results are discussed taking into account other approaches towards minimizing numerical diffusion.  相似文献   
489.
Current conceptual runoff models hypothesize that stormflow generation on the Canadian Shield is a combination of subsurface stormflow and saturation overland flow. This concept was tested during spring runoff in a small (3.3 ha) headwater basin using: (1) isotopic and chemical hydrograph separation and (2) field mapping and direct tracing of saturated areas. Isotopic and chemical hydrograph separation indicated three runoff components: (1) pre-melt subsurface flow; (2) subsurface flow of new (event) water; and (3) direct precipitation on to saturated areas (DPS). During early thaw-freeze cycles, their relative contributions to total flow remained constant (65 per cent, 30 per cent, and 5 per cent respectively). It is hypothesized that lateral flow along the bedrock/mineral soil interface, possibly through macropores, supplied large volumes of subsurface flow (of both old and new water) rapidly to the stream channel. Much higher contributions of DPS were observed during an intensive rain-on-snow event (15 per cent of total flow). Mapping and direct tracing of saturated areas using lithium bromide, suggested that saturated area size was positively correlated to stream discharge but its response lagged behind that of discharge. These observations suggest that the runoff mechanisms, and hence the sources of stream flow, will vary depending on storm characteristics.  相似文献   
490.
In the area of the Bolivian Orocline, we examine the deformation pattern associated with the active development of a new thrust sheet. A dense grid of reprocessed 2-D seismic lines from hydrocarbon exploration industry is interpreted and a 3-D simplified structural and kinematic model is deduced. In the Boomerang Hills, onlapping Paleozoic and foredeep sediments are detached from the underlying S-dipping basement. They are thrust northeastwards by less than 2 km. Two zones can be differentiated along the Andean deformation front: (1) a W–E to NW–SE striking frontal segment of predominantly orthogonal shortening, comprising a thrust and anticline system; (2) a WSW–ENE striking lateral zone of oblique shortening within a complex system of thin-skinned strike–slip faults and minor folds. The deformation front always follows a pronounced edge in the topography of the top basement surface close to the boundary of the Paleozoic basin. The observed deformation pattern indicates intensified strain partitioning caused by the interaction of contraction direction and basement topography, which provides a near oblique ramp for the onlapping wedge of sediments. The SW–NE thrusting direction is divided into orthogonal and tangential components. These are accommodated by convergent and strike–slip structures, respectively, which sole into a common detachment horizon. The structural evolution of the new thrust sheet in the Bolivian Orocline is primarily controlled by the paleorelief of the Brazilian Shield because: (1) the shape of the basement affects the taper of the thrust wedge and localizes the deformation front and (2) small asperities in/close to the top of the basement promote fault localization. The coincidence of a relatively high basement position and a structural high of the Eastern Cordillera leads to the conclusion that the shape of the Brazilian Shield also controls the structural evolution of the pronounced eastern border of the Bolivian Orocline.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号