首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6904篇
  免费   383篇
  国内免费   38篇
测绘学   188篇
大气科学   736篇
地球物理   1800篇
地质学   2672篇
海洋学   377篇
天文学   1208篇
综合类   32篇
自然地理   312篇
  2023年   32篇
  2022年   47篇
  2021年   128篇
  2020年   145篇
  2019年   112篇
  2018年   320篇
  2017年   324篇
  2016年   424篇
  2015年   310篇
  2014年   379篇
  2013年   537篇
  2012年   432篇
  2011年   393篇
  2010年   366篇
  2009年   384篇
  2008年   275篇
  2007年   230篇
  2006年   207篇
  2005年   179篇
  2004年   206篇
  2003年   149篇
  2002年   160篇
  2001年   124篇
  2000年   111篇
  1999年   89篇
  1998年   90篇
  1997年   108篇
  1996年   66篇
  1995年   77篇
  1994年   72篇
  1993年   46篇
  1992年   32篇
  1991年   36篇
  1990年   63篇
  1989年   31篇
  1988年   24篇
  1987年   43篇
  1986年   29篇
  1985年   38篇
  1984年   41篇
  1983年   34篇
  1982年   34篇
  1981年   41篇
  1980年   21篇
  1979年   25篇
  1978年   20篇
  1977年   23篇
  1975年   17篇
  1974年   17篇
  1973年   21篇
排序方式: 共有7325条查询结果,搜索用时 359 毫秒
921.
Molcard  Anne  Gramoullé  Anthony  Mazoyer  Camille  Bourg  Natacha  Ourmières  Yann 《Ocean Dynamics》2021,71(10):993-1009
Ocean Dynamics - Coastal regions are vulnerable areas with often high population density, as well as tourism and maritime activities that may have negative impact on the environment. From a...  相似文献   
922.
High angular resolution mm-wave observations of the Orion-KL region, made with the IRAM Plateau de Bure interferometer (PdBI), reveal the presence of several cores of size 103 AU, which have distinct spectral signatures. Complex molecules such as ethanol, vinyl cyanide and dimethyl ether show different distributions and their relative abundance varies from core to core by orders of magnitude. The molecular column densities derived in the cores also differ widely from the beam-averaged column densities observed with large single-dish telescopes. Obviously, the predictions of hot core chemistry models must be checked against high resolution observations. ALMA, which allies sensitivity and high angular resolution, will be a key instrument for this type of studies. The PdBI observations were part of a search for interstellar glycine, also carried out with the IRAM 30-m telescope and the Green Bank Telescope. We derive a 3σ upper limit on the column density of glycine of 1×1015 cm−2 per 2″×3″ beam in the Orion Hot Core and Compact Ridge. Based on observations made with the IRAM PdB Interferometer, the IRAM 30-m telescope and the NRAO Green-Bank telescope. IRAM is supported by CNRS, MPG and IGN.  相似文献   
923.
We briefly present the nonradial adiabatic pulsation code PULSE first developped for white dwarf asteroseismology and now used to compute adiabatic oscillation properties for various types of stellar objects. Numerical tests show that the code is able to provide the accuracy (for a given stellar model) required to deal with the precision in frequency expected from the COROT long runs. While the ultimate objective is to compare the output of various pulsation codes (see these proceedings), we already emphasize problems that need to be addressed concerning, in particular, the mesh resolution of the input stellar models and its impact on the accuracy at which frequencies can be computed.  相似文献   
924.
In this paper we extend the idea suggested previously by Pétri (Astron. Astrophys. 439:L27, 2005a; 443:777, 2005b) (papers I and II) that the high frequency quasi-periodic oscillations (HF-QPOs) observed in low-mass X-ray binaries (LMXBs) may be explained as a resonant oscillation of the accretion disk with a rotating asymmetric background (gravitational or magnetic) field imposed by the compact object. Here, we apply this general idea to black hole binaries. It is assumed that a test particle experiences a similar parametric resonance mechanism such as the one described in paper I and II but now the resonance is induced by the interaction between a spiral density wave in the accretion disk, excited close to the innermost stable circular orbit, and vertical epicyclic oscillations. We use the Kerr spacetime geometry to deduce the characteristic frequencies of this test particle. The response of the test particle is maximal when the frequency ratio of the two strongest resonances is equal to 3:2 as observed in black hole candidates. Finally, applying our model to the microquasar GRS 1915+105, we reproduce the correct value of several HF-QPOs. Indeed the presence of the 168/113/56/42/28 Hz features in the power spectrum time analysis is predicted. Moreover, based only on the two HF-QPO frequencies, our model is able to constrain the mass M BH and angular momentum a BH of the accreting black hole. We show the relation between M BH and a BH for several black hole binaries. For instance, assuming a black hole weakly or mildly rotating, i.e. a BH≤0.5?G? M BH/c 2, we find that for GRS 1915+105 its mass satisfies 13?M M BH≤20?M . The same model applied to two other well-known BHCs gives for GRO J1655-40 a mass 5?M M BH≤7?M and for XTE J1550-564 a mass 8?M M BH≤11?M . This is consistent with other independent estimations of the black hole mass. Finally for H1743-322, we found the following bounds, 9?M M BH≤13?M .  相似文献   
925.
Pulsating structures recorded at 237 MHz that are associated to decimetric continuum enhancement during the September 9, 2001 solar radio burst are described. We analyzed the radiopolarimetric data recorded at the Trieste Solar Radio System (INAF—Trieste Astronomical Observatory—Basovizza Observing Station) with very high time resolution (1 ms) at metric frequencies. Two different types of pulsations that occur in about 4 minutes at the same frequency are described. The possible mechanisms are analyzed and some parameters of the associated magnetic structure are estimated.  相似文献   
926.
927.
We study the 37 brightest radio sources in the Subaru/ XMM–Newton Deep Field. We have spectroscopic redshifts for 24 of 37 objects and photometric redshifts for the remainder, yielding a median redshift z med for the whole sample of   z med≃ 1.1  and a median radio luminosity close to the 'Fanaroff–Riley type I/type II (FR I/FR II)' luminosity divide. Using mid-infrared (mid-IR) ( Spitzer MIPS 24 μm) data we expect to trace nuclear accretion activity, even if it is obscured at optical wavelengths, unless the obscuring column is extreme. Our results suggest that above the FR I/FR II radio luminosity break most of the radio sources are associated with objects that have excess mid-IR emission, only some of which are broad-line objects, although there is one clear low-accretion-rate object with an FR I radio structure. For extended steep-spectrum radio sources, the fraction of objects with mid-IR excess drops dramatically below the FR I/FR II luminosity break, although there exists at least one high-accretion-rate 'radio-quiet' QSO. We have therefore shown that the strong link between radio luminosity (or radio structure) and accretion properties, well known at z ∼ 0.1, persists to z ∼ 1. Investigation of mid-IR and blue excesses shows that they are correlated as predicted by a model in which, when significant accretion exists, a torus of dust absorbs ∼30 per cent of the light, and the dust above and below the torus scatters ≳1 per cent of the light.  相似文献   
928.
We investigate the damping of longitudinal (i.e., slow or acoustic) waves in nonisothermal, hot (T≥ 5.0 MK), gravitationally stratified coronal loops. Motivated by SOHO/SUMER and Yohkoh/SXT observations, and by taking into account a range of dissipative mechanisms such as thermal conduction, compressive viscosity, radiative cooling, and heating, the nonlinear governing equations of one-dimensional hydrodynamics are solved numerically for standing-wave oscillations along a magnetic field line. A semicircular shape is chosen to represent the geometry of the coronal loop. It was found that the decay time of standing waves decreases with the increase of the initial temperature, and the periods of oscillations are affected by the different initial footpoint temperatures and loop lengths studied by the numerical experiments. In general, the period of oscillation of standing waves increases and the damping time decreases when the parameter that characterises the temperature at the apex of the loop increases for a fixed footpoint temperature and loop length. A relatively simple second-order scaling polynomial between the damping time and the parameter determining the apex temperature is found. This scaling relation is proposed to be tested observationally. Because of the lack of a larger, statistically relevant number of observational studies of the damping of longitudinal (slow) standing oscillations, it can only be concluded that the numerically predicted decay times are well within the range of values inferred from Doppler shifts observed by SUMER in hot coronal loops.  相似文献   
929.
Y. Taroyan  R. Erdélyi 《Solar physics》2008,251(1-2):523-531
The upward propagation of linear acoustic waves in a gravitationally stratified solar atmosphere is studied. The wave motion is governed by the Klein?–?Gordon equation, which contains a cutoff frequency introduced by stratification. The acoustic cutoff may act as a potential barrier when the temperature decreases with height. It is shown that waves trapped below the barrier could be subject to a resonance that extends into the entire unbounded atmosphere of the Sun. The parameter space characterizing the resonance is explored.  相似文献   
930.
Large amounts of particles ejected from the nucleus surface are present in the vicinity of the cometary nuclei when comets are near the Sun (at heliocentric distances ≤2 AU). The largest dust grains ejected may constitute a hazard for spatial vehicles. We tried to obtain the bounded orbits of those particles and to investigate their stability along several orbital periods. The model includes the solar and the cometary gravitational forces and the solar radiation pressure force. The nucleus is assumed to be spherical. The dust grains are also assumed to be spherical, and radially ejected. We include the effects of centrifugal forces owing to the comet rotation. An expression for the most heavy particles that can be lifted is proposed. Using the usual values adopted for the case of Halley’s comet, the largest grains that can be lifted have a diameter about 5 cm, and the term due to the rotation is negligible. However, that term increases the obtained value for the maximum diameter of the lifted grain in a significant amount when the rotation period is of the order of a few hours.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号