首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1825篇
  免费   81篇
  国内免费   7篇
测绘学   76篇
大气科学   136篇
地球物理   391篇
地质学   720篇
海洋学   134篇
天文学   298篇
综合类   8篇
自然地理   150篇
  2024年   5篇
  2023年   12篇
  2022年   10篇
  2021年   30篇
  2020年   46篇
  2019年   44篇
  2018年   55篇
  2017年   77篇
  2016年   91篇
  2015年   60篇
  2014年   61篇
  2013年   121篇
  2012年   79篇
  2011年   96篇
  2010年   108篇
  2009年   102篇
  2008年   104篇
  2007年   93篇
  2006年   92篇
  2005年   84篇
  2004年   87篇
  2003年   58篇
  2002年   61篇
  2001年   36篇
  2000年   24篇
  1999年   38篇
  1998年   20篇
  1997年   15篇
  1996年   17篇
  1995年   6篇
  1994年   21篇
  1993年   14篇
  1992年   7篇
  1991年   7篇
  1990年   8篇
  1989年   7篇
  1988年   5篇
  1987年   8篇
  1986年   6篇
  1985年   9篇
  1984年   6篇
  1983年   10篇
  1982年   7篇
  1981年   8篇
  1980年   15篇
  1979年   7篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1974年   4篇
排序方式: 共有1913条查询结果,搜索用时 15 毫秒
91.
The effect exerted by the seabed morphology on the flow is commonly expressed by the hydraulic roughness, a fundamental parameter in the understanding and simulation of hydro- and sediment dynamics in coastal areas. This study quantifies the hydraulic roughness of large compound bedforms throughout a tidal cycle and investigates its relationship to averaged bedform dimensions. Consecutive measurements with an acoustic Doppler current profiler and a multibeam echosounder were carried out in the Jade tidal channel (North Sea, Germany) along large compound bedforms comprising ebb-oriented primary bedforms with superimposed smaller secondary bedforms. Spatially averaged velocity profiles produced log-linear relationships which were used to calculate roughness lengths. During the flood phase, the velocity profiles were best described by a single log-linear fit related to the roughness created by the secondary bedforms. During the ebb phase, the velocity profiles were segmented, showing the existence of at least two boundary layers: a lower one scaling with the superimposed secondary bedforms and an upper one scaling with the ebb-oriented primary bedforms. The drag induced by the primary bedform during the ebb phase is suggested to be related to flow expansion, separation, and recirculation on the downstream side of the bedform. Three existing formulas were tested to predict roughness lengths from the local bedform dimensions. All three predicted the right order of magnitude for the average roughness length but failed to predict its variation over the tidal cycle.  相似文献   
92.
Single bed load particle impacts were experimentally investigated in supercritical open channel flow over a fixed planar bed of low relative roughness height simulating high‐gradient non‐alluvial mountain streams as well as hydraulic structures. Particle impact characteristics (impact velocity, impact angle, Stokes number, restitution and dynamic friction coefficients) were determined for a wide range of hydraulic parameters and particle properties. Particle impact velocity scaled with the particle velocity, and the vertical particle impact velocity increased with excess transport stage. Particle impact and rebound angles were low and decreased with transport stage. Analysis of the particle impacts with the bed revealed almost no viscous damping effects with high normal restitution coefficients exceeding unity. The normal and resultant Stokes numbers were high and above critical thresholds for viscous damping. These results are attributed to the coherent turbulent structures near the wall region, i.e. bursting motion with ejection and sweep events responsible for turbulence generation and particle transport. The tangential restitution coefficients were slightly below unity and the dynamic friction coefficients were lower than for alluvial bed data, revealing that only a small amount of horizontal energy was transferred to the bed. The abrasion prediction model formed by Sklar and Dietrich in 2004 was revised based on the new equations on vertical impact velocity and hop length covering various bed configurations. The abrasion coefficient kv was found to be vary around kv ~ 105 for hard materials (tensile strength ft > 1 MPa), one order of magnitude lower than the value assumed so far for Sklar and Dietrich's model. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
93.
94.
95.
Wind-induced drift of objects at sea: The leeway field method   总被引:3,自引:0,他引:3  
A method for conducting leeway field experiments to establish the drift properties of small objects (0.1-25 m) is described. The objective is to define a standardized and unambiguous procedure for condensing the drift properties down to a set of coefficients that may be incorporated into existing stochastic trajectory forecast models for drifting objects of concern to search and rescue operations and other activities involving vessels lost at sea such as containers with hazardous material.An operational definition of the slip or wind and wave-induced motion of a drifting object relative to the ambient current is proposed. This definition taken together with a strict adherence to a 10 m wind speed allows us to refer unambiguously to the leeway of a drifting object. We recommend that all objects if possible be studied using what we term the direct method, where the object’s leeway is studied directly using an attached current meter.We establish a minimum set of parameters that should be estimated for a drifting object for it to be included in the operational forecast models used for prediction of search areas for drifting objects.We divide drifting objects into four categories, depending on their size. For the smaller objects (less than 0.5 m), an indirect method of measuring the object’s motion relative to the ambient current must be used. For larger objects, direct measurement of the motion through the near-surface water masses is strongly recommended. Larger objects are categorized according to the ability to attach current meters and wind monitoring systems to them.The leeway field method proposed here is illustrated with results from field work where three objects were studied in their distress configuration; a 1:3.3 sized model of a 40-foot Shipping container, a World War II mine and a 220 l (55-gallon) oil drum.  相似文献   
96.
Nanoscale amorphous silicates are a major component in primitive carbonaceous chondrite matrices and anhydrous interplanetary dust particles. Owing to their metastability and sensitive response to reactions with water, this material is of particular interest in understanding nebular and parent body processes in the early solar system. Here we investigated the amorphous silicate matrix (ASM) in the ungrouped carbonaceous chondrite Acfer 094 regarding its texture, chemical composition, and Fe oxidation state. We applied transmission electron microscopy techniques on six, focused ion beam technique-prepared, electron-transparent lamellae of Acfer 094 to determine the textures of this material. Furthermore, we used energy-dispersive X-ray analysis and electron energy loss spectroscopy to quantify the Fe content and the Fe oxidation state of the ASM. Textural investigations reveal differences in sulfide content, porosity, and distribution of the ASM among the samples, as well as evidence for rare recrystallization of phyllosilicate fibers. The chemical composition reveals mobilization of Fe. Furthermore, the determined Fe3+/ΣFe ratios of the ASM in the six samples display a homogeneously high oxidation state (0.66–0.73). This high and homogeneous Fe oxidation state in the ASM of Acfer 094 disagrees with its formation as a primary phase in a reduced solar gas and must have been induced in a later stage process. Most likely, this process was aqueous alteration on the Acfer 094 parent body, which led to hydration and oxidation of the ASM, which is supported by textural and chemical evidence of aqueous alteration.  相似文献   
97.
Suevite and melt breccia compositions in the boreholes Enkingen and Polsingen are compared with compositions of suevites from other Ries boreholes and surface locations and discussed in terms of implications for impact breccia genesis. No significant differences in average chemical compositions for the various drill cores or surface samples are noted. Compositions of suevite and melt breccia from southern and northeastern sectors of the Ries crater do not significantly differ. This is in stark contrast to the published variations between within‐crater and out‐of‐crater suevites from northern and southern sectors of the Bosumtwi impact structure, Ghana. Locally occurring alteration overprint on drill cores—especially strong on the carbonate‐impregnated suevite specimens of the Enkingen borehole—does affect the average compositions. Overall, the composition of the analyzed impact breccias from Ries are characterized by very little macroscopically or microscopically recognized sediment‐clast component; the clast populations of suevite and impact melt breccia are dominated consistently by granitic and intermediate granitoid components. The Polsingen breccia is significantly enriched in a dioritic clast component. Overall, chemical compositions are of intermediate composition as well, with dioritic‐granodioritic silica contents, and relatively small contributions from mafic target components. Selected suevite samples from the Enkingen core have elevated Ni, Co, Cr, and Ir contents compared with previously analyzed suevites from the Ries crater, which suggest a small meteoritic component. Platinum‐group element (PGE) concentrations for some of the enriched samples indicate somewhat elevated concentrations and near‐chondritic ratios of the most immobile PGE, consistent with an extraterrestrial contribution of 0.1–0.2% chondrite‐equivalent.  相似文献   
98.
The evolution of a stellar, initially dipole type magnetosphere interacting with an accretion disk is investigated using numerical ideal MHD simulations. The simulations follow several 1000 Keplerian periods of the inner disk (for animated movies see http://www.aip.de~cfendt).Our model prescribes a Keplerian disk around a rotating star as a fixed boundary condition. The initial magnetic field distribution remains frozen into the star and the disk. The mass flow rate into the corona is fixed for both components. The initial dipole type magnetic field develops into a spherically radial outflow pattern with two main components – a disk wind and a stellar wind – both evolving into a quasi-stationary final state. A neutral field line divides both components, along which small plasmoids are ejected in irregular time intervals. The half opening angle of the stellar wind cone varies from 30° to55° depending on the ratio of the mass flow rates of disk wind and stellar wind. The maximum speed of the outflow is about the Keplerian speed at the inner disk radius. An axial jet forms during the first decades of rotations. However, this feature does not survive on the very long time scale and a pressure driven low velocity flow along the axis evolves. Within a cone of 15° along the axis the formation of knots may be observed if the stellar wind is weak. With the chosen mass flow rates and field strength we see almost no indication for a flow self-collimation. This is due to the weak net poloidal electric current in the magnetosphere which is in difference to typical jet models.  相似文献   
99.
Abstract— We studied unshocked and experimentally (at 12, 25, and 28 GPa, with 25, 100, 450, and 750°C pre‐shock temperatures) shock‐metamorphosed Hospital Hill quartzite from South Africa using cathodoluminescence (CL) images and spectroscopy and Raman spectroscopy to document systematic pressure or temperature‐related effects that could be used in shock barometry. In general, CL images of all samples show CL‐bright luminescent patchy areas and bands in otherwise nonluminescent quartz, as well as CL‐dark irregular fractures. Fluid inclusions appear dominant in CL images of the 25 GPa sample shocked at 750°C and of the 28 GPa sample shocked at 450°C. Only the optical image of our 28 GPa sample shocked at 25°C exhibits distinct planar deformation features (PDFs). Cathodoluminescence spectra of unshocked and experimentally shocked samples show broad bands in the near‐ultraviolet range and the visible light range at all shock stages, indicating the presence of defect centers on, e.g., SiO4 groups. No systematic change in the appearance of the CL images was obvious, but the CL spectra do show changes between the shock stages. The Raman spectra are characteristic for quartz in the unshocked and 12 GPa samples. In the 25 and 28 GPa samples, broad bands indicate the presence of glassy SiO2, while high‐pressure polymorphs are not detected. Apparently, some of the CL and Raman spectral properties can be used in shock barometry.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号