首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2092篇
  免费   91篇
  国内免费   23篇
测绘学   80篇
大气科学   184篇
地球物理   508篇
地质学   606篇
海洋学   139篇
天文学   456篇
综合类   3篇
自然地理   230篇
  2021年   42篇
  2020年   37篇
  2019年   45篇
  2018年   62篇
  2017年   44篇
  2016年   64篇
  2015年   63篇
  2014年   61篇
  2013年   116篇
  2012年   84篇
  2011年   103篇
  2010年   79篇
  2009年   124篇
  2008年   90篇
  2007年   91篇
  2006年   102篇
  2005年   95篇
  2004年   92篇
  2003年   85篇
  2002年   74篇
  2001年   65篇
  2000年   54篇
  1999年   53篇
  1998年   49篇
  1997年   35篇
  1996年   24篇
  1995年   27篇
  1994年   34篇
  1993年   25篇
  1992年   17篇
  1991年   13篇
  1990年   10篇
  1989年   17篇
  1988年   14篇
  1987年   14篇
  1986年   14篇
  1985年   17篇
  1984年   16篇
  1983年   14篇
  1982年   15篇
  1981年   13篇
  1980年   12篇
  1979年   17篇
  1978年   9篇
  1977年   12篇
  1976年   11篇
  1975年   10篇
  1974年   11篇
  1973年   5篇
  1972年   9篇
排序方式: 共有2206条查询结果,搜索用时 15 毫秒
71.
西藏恰功铁矿岩浆演化序列及斑岩出溶流体特征   总被引:5,自引:1,他引:5  
冈底斯成矿带是碰撞造山过程形成的最重要的成矿带,恰功矽卡岩铁(铜)矿床即位于冈底斯成矿带中部.本文在详细的野外地质填图和室内研究基础上确定了恰功铁矿与成矿有关的斑岩体为二长花岗斑岩,锆石的U-Pb定年结果为68.8±2.2 Ma,明显早于冈底斯东部与后碰撞伸展有关的斑岩型矿床和主碰撞期形成的矽卡岩型矿床,其应代表了冈底斯一次尚未被充分认识到的成矿事件.通过对成矿斑岩的岩石学、岩石化学、岩浆出溶流体的包裹体岩相学、显微测温分析及包裹体成分的LRM、LA-ICP-MS和PIXE分析,本文探讨了与该矽卡岩矿床有关的斑岩的岩浆起源、斑岩侵位机制及出溶流体特征.结果表明,成矿斑岩为矿区最早的侵入岩单元,具有壳幔源混源特征,其常量元素组成与冈底斯东部斑岩铜矿带的埃达克质岩相近,但稀土和微量元素组成与东部斑岩明显不同,为地幔物质上涌并诱发角闪岩相下地壳熔融的产物,岩体侵位深度大(>7 km)、剥蚀程度高.早期岩浆出溶的流体为高温、高压、高盐度流体,其中富含Fe、Pb、Zn、Cu等成矿金属,与世界其他斑岩铜矿床相比,相对富铁、铅而贫铜.流体的沸腾作用发生于钾硅化阶段,形成了一套富气、高盐、高固相和气液包裹体组合,不同于早期出溶流体的包裹体组合.从岩浆起源和出溶流体性质可以看出,该斑岩具有形成与斑岩有关的铁铅多金属矿床的成矿潜力,但从该矿区地表出露的蚀变和包裹体测压结果可以看出,该斑岩体目前剥蚀深度较大,对斑岩型矿床保存不利,对该斑岩体及与成矿关系的认识对理解该区内的矿床成因和指导区域找矿具有重要的指示意义.  相似文献   
72.
Alkaline lavas were erupted as phonolites and trachytes around Karaburhan (Sivrihisar–Eskisehir, NW Anatolia) within the Izmir–Ankara–Erzincan suture zone. These volcanic rocks were emplaced as domes, close and parallel to the ophiolite thrust line. According to 40Ar/39Ar geochronological analyses of sanidine crystals from the phonolites, the age of the alkaline volcanics is 25 Ma (Late Oligocene–Early Miocene).The flow-textured phonolites are porphyritic and consist mainly of sanidine, clinopyroxene, and feldspathoid crystals. The clinopyroxenes show compositional zoning, with aegirine (Na0.82–0.96Fe+30.68–0.83) rims and aegirine–augite cores (containing calcium, magnesium, and Fe+2). Some aegirine–augites are replaced with sodium-, calcium-, and magnesium-rich amphibole (hastingsite). Feldspathoid (hauyne) crystals enriched with elemental Na and Ca have been almost completely altered to zeolite and carbonate minerals. The fine-grained trachytes with a trachytic texture consist of feldspar (oligoclase and sanidine) phenocrystals and clinopyroxene microphenocrystals within a groundmass made up largely of alkali feldspar microlites.Although there are some differences in their element patterns, the phonolites and trachytes exhibit enrichment in LILEs (Sr, K, Rb, Ba, Th) and LREEs (La, Ce, Pr, Nd) and negative anomalies in Nb and Ta. These geochemical characteristics indicate a lithospheric mantle enriched by fluids extracted from the subduction component. In addition, the high 87Sr/86Sr (0.706358–0.708052) and low 143Nd/144Nd (0.512546–0.512646) isotope concentrations of the alkaline lavas reflect a mantle source that has undergone metasomatism by subduction-derived fluids. Petrogenetic modeling indicates that the alkaline lavas generated from the subduction-modified lithospheric mantle have undergone assimilation, fractional crystallization, and crustal contamination, acquiring high Pb, Ba, Rb, and Sr contents and Pb isotopic compositions during their ascent through the thickened crust in an extensional setting.  相似文献   
73.
The Regional Climate Model Evaluation System (RCMES) facilitates the rapid, flexible inclusion of NASA observations into climate model evaluations. RCMES provides two fundamental components. A database (RCMED) is a scalable point-oriented cloud database used to elastically store remote sensing observations and to make them available using a space time query interface. The analysis toolkit (RCMET) is a Python-based toolkit that can be delivered as a cloud virtual machine, or as an installer package deployed using Python Buildout to users in order to allow for temporal and spatial regridding, metrics calculation (RMSE, bias, PDFs, etc.) and end-user visualization. RCMET is available to users in an “offline”, lone scientist mode based on a virtual machine dynamically constructed with model outputs and observations to evaluate; or on an institution’s computational cluster seated close to the observations and model outputs. We have leveraged RCMES within the content of the Coordinated Regional Downscaling Experiment (CORDEX) project, working with the University of Cape Town and other institutions to compare the model output to NASA remote sensing data; in addition we are also working with the North American Regional Climate Change Assessment Program (NARCCAP). In this paper we explain the contribution of cloud computing to RCMES’s specifically describing studies of various cloud databases we evaluated for RCMED, and virtualization toolkits for RCMET, and their potential strengths in delivering user-created dynamic regional climate model evaluation virtual machines for our users.  相似文献   
74.
The Komsomolskaya kimberlite is one of numerous (>1,000) kimberlite pipes that host eclogite xenoliths on the Siberian craton. Eclogite xenoliths from the adjacent Udachnaya kimberlite pipe have previously been geochemically well characterized; however, data from surrounding diamond-bearing kimberlite pipes from the center of the craton are relatively sparse. Here, we report major- and trace-element data, as well as oxygen isotope systematics, for mineral separates of diamondiferous eclogite xenoliths from the Komsomolskaya kimberlite, suggesting two distinct subgroups of a metamorphosed, subducted oceanic crustal protolith. Using almandine contents, this suite can be divided into two subgroups: group B1, with a high almandine component (>20 mol%) and group B2, with a low almandine component (<20 mol%). Reconstructed REE profiles for B1 eclogites overlap with typical oceanic basalts and lack distinct Eu anomalies. In addition, elevated oxygen isotope values, which are interpreted to reflect isotopic exchange with seawater at low temperatures (<350 °C), are consistent with an upper-oceanic crustal protolith. Reconstructed REE profiles for B2 eclogites are consistent with oceanic gabbros and display distinct Eu anomalies, suggesting a plagioclase-rich cumulate protolith. In contrast to B1, B2 eclogites do not display elevated oxygen isotope values, suggesting an origin deep within the crustal pile, where little-to-no interaction with hydrothermal fluids has occurred. Major-element systematics were reconstructed based on mineral modes; group B1 eclogites have higher MgO wt% and lower SiO2 wt%, with respect to typical oceanic basalts, reflecting a partial melting event during slab subduction. Calculated residues from batch partial melt modeling of a range of Precambrian basalts overlap with group B1 trace-element chemistry. When taken together with the respective partial melt trajectories, these melting events are clearly linked to the formation of Tonalite–Trondhjemite–Granodiorite (TTG) complexes. As a result, we propose that many, if not all, diamondiferous eclogite xenoliths from Komsomolskaya represent mantle ‘restites’ that preserve chemical signatures of Precambrian oceanic crust.  相似文献   
75.
Karanja  Joseph  Kiage  Lawrence M. 《Natural Hazards》2022,113(1):789-812
Natural Hazards - The implications of hazards on populations are accentuated or alleviated by the nature of social systems, yet the multi-scalar variations of socioeconomic and demographic...  相似文献   
76.
Large asteroid impacts are rare, and those into the deep ocean are rarer still. The Eltanin asteroid impact around 2.51 ± 0.07 Ma occurred at a time of great climatic and geological change associated with the Pliocene–Pleistocene boundary. Numerical models of the event indicate that a megatsunami was generated, although there is debate concerning its magnitude and the region‐wide extent of its influence. We summarise the existing evidence for possible Eltanin megatsunami deposits in Antarctica, Chile and New Zealand, while also examining other potential sites from several locations, mainly around the South Pacific region. In reviewing these data we note that these events were unfolding at the same time as those associated with the Pliocene–Pleistocene boundary and, as such, most of the geological evidence from that time has a climatic interpretation. The potential climatic and geological ramifications of the Eltanin asteroid impact, however, have failed to be considered by most researchers studying this time period. Although we are not advocating that all geological activity at that time is connected with the Eltanin asteroid impact, it raises interesting questions about the role potentially played by such catastrophic events in contributing to or even triggering epochal transitions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
77.
Rapidly transforming headwater catchments in the humid tropics provide important resources for drinking water, irrigation, hydropower, and ecosystem connectivity. However, such resources for downstream use remain unstudied. To improve understanding of the behaviour and influence of pristine rainforests on water and tracer fluxes, we adapted the relatively parsimonious, spatially distributed tracer‐aided rainfall–runoff (STARR) model using event‐based stable isotope data for the 3.2‐km2 San Lorencito catchment in Costa Rica. STARR was used to simulate rainforest interception of water and stable isotopes, which showed a significant isotopic enrichment in throughfall compared with gross rainfall. Acceptable concurrent simulations of discharge (Kling–Gupta efficiency [KGE] ~0.8) and stable isotopes in stream water (KGE ~0.6) at high spatial (10 m) and temporal (hourly) resolution indicated a rapidly responding system. Around 90% of average annual streamflow (2,099 mm) was composed of quick, near‐surface runoff components, whereas only ~10% originated from groundwater in deeper layers. Simulated actual evapotranspiration (ET) from interception and soil storage were low (~420 mm/year) due to high relative humidity (average 96%) and cloud cover limiting radiation inputs. Modelling suggested a highly variable groundwater storage (~10 to 500 mm) in this steep, fractured volcanic catchment that sustains dry season baseflows. This groundwater is concentrated in riparian areas as an alluvial–colluvial aquifer connected to the stream. This was supported by rainfall–runoff isotope simulations, showing a “flashy” stream response to rainfall with only a moderate damping effect and a constant isotope signature from deeper groundwater (~400‐mm additional mixing volume) during baseflow. The work serves as a first attempt to apply a spatially distributed tracer‐aided model to a tropical rainforest environment exploring the hydrological functioning of a steep, fractured‐volcanic catchment. We also highlight limitations and propose a roadmap for future data collection and spatially distributed tracer‐aided model development in tropical headwater catchments.  相似文献   
78.
Upper Permian to Lower Triassic coastal plain successions of the Sydney Basin in eastern Australia have been investigated in outcrop and continuous drillcores. The purpose of the investigation is to provide an assessment of palaeoenvironmental change at high southern palaeolatitudes in a continental margin context for the late Permian (Lopingian), across the end‐Permian Extinction interval, and into the Early Triassic. These basins were affected by explosive volcanic eruptions during the late Permian and, to a much lesser extent, during the Early Triassic, allowing high‐resolution age determination on the numerous tuff horizons. Palaeobotanical and radiogenic isotope data indicate that the end‐Permian Extinction occurs at the top of the uppermost coal bed, and the Permo‐Triassic boundary either within an immediately overlying mudrock succession or within a succeeding channel sandstone body, depending on locality due to lateral variation. Late Permian depositional environments were initially (during the Wuchiapingian) shallow marine and deltaic, but coastal plain fluvial environments with extensive coal‐forming mires became progressively established during the early late Permian, reflected in numerous preserved coal seams. The fluvial style of coastal plain channel deposits varies geographically. However, apart from the loss of peat‐forming mires, no significant long‐term change in depositional style (grain size, sediment‐body architecture, or sediment dispersal direction) was noted across the end‐Permian Extinction (pinpointed by turnover of the palaeoflora). There is no evidence for immediate aridification across the boundary despite a loss of coal from these successions. Rather, the end‐Permian Extinction marks the base of a long‐term, progressive trend towards better‐drained alluvial conditions into the Early Triassic. Indeed, the floral turnover was immediately followed by a flooding event in basinal depocentres, following which fluvial systems similar to those active prior to the end‐Permian Extinction were re‐established. The age of the floral extinction is constrained to 252.54 ± 0.08 to 252.10 ± 0.06 Ma by a suite of new Chemical Abrasion Isotope Dilution Thermal Ionization Mass Spectrometry U‐Pb ages on zircon grains. Another new age indicates that the return to fluvial sedimentation similar to that before the end‐Permian Extinction occurred in the basal Triassic (prior to 251.51 ± 0.14 Ma). The character of the surface separating coal‐bearing pre‐end‐Permian Extinction from coal‐barren post‐end‐Permian Extinction strata varies across the basins. In basin‐central locations, the contact varies from disconformable, where a fluvial channel body has cut down to the level of the top coal, to conformable where the top coal is overlain by mudrocks and interbedded sandstone–siltstone facies. In basin‐marginal locations, however, the contact is a pronounced erosional disconformity with coarse‐grained alluvial facies overlying older Permian rocks. There is no evidence that the contact is everywhere a disconformity or unconformity.  相似文献   
79.
Scales of nutrient-limited phytoplankton productivity in Chesapeake Bay   总被引:1,自引:0,他引:1  
The scales on which phytoplankton biomass vary in response to variable nutrient inputs depend on the nutrient status of the plankton community and on the capacity of consumers to respond to increases in phytoplankton productivity. Overenrichment and associated declines in water quality occur when phytoplankton growth rate becomes nutrient-saturated, the production and consumption of phytoplankton biomass become uncoupled in time and space, and phytoplankton biomass becomes high and varies on scales longer than phytoplankton generation times. In Chesapeake Bay, phytoplankton growth rates appear to be limited by dissolved inorganic phosphorus (DIP) during spring when biomass reaches its annual maximum and by dissolved inorganic nitrogen (DIN) during summer when phytoplankton growth rates are highest. However, despite high inputs of DIN and dissolved silicate (DSi) relative to DIP (molar ratios of N∶P and Si∶P>100), seasonal accumulations of phytoplankton biomass within the salt-intruded-reach of the bay appear to be limited by riverine DIN supply while the magnitude of the spring diatom bloom is governed by DSi supply. Seasonal imbalances between biomass production and consumption lead to massive accumulations of phytoplankton biomass (often>1,000 mg Chl-a m?2) during spring, to spring-summer oxygen depletion (summer bottom water <20% saturation), and to exceptionally high levels of annual phytoplankton production (>400 g m?2 yr?1). Nitrogen-dependent seasonal accumulations of phytoplankton biomass and annual production occur as a consequence of differences in the rates and pathways of nitrogen and phosphorus cycling within the bay and underscore the importance of controlling nitrogen inputs to the mesohaline and lower reaches of the bay.  相似文献   
80.
Organic matter in small mesopores in sediments and soils   总被引:1,自引:0,他引:1  
The three-way correlation among organic matter concentrations, specific surface area and small mesopores observed for many soils and sediments led to the hypothesis that enclosure within the pores might explain the apparent protection of organic matter by minerals. We test this hypothesis by examining whether the bulk of organic matter resides within small mesopores. Pore volumes as a function of pore width were measured before and after organic matter removal, and the volume differences ascribed to organic matter filling of pores. Minor changes in small mesopore size distributions upon treatments such as centrifugation and muffling indicate the robustness of the mineral matrices that form these pores. We developed an additional method to assess organic matter densities using high-resolution pycnometry, and used these densities to convert pore volumes to organic matter contents. Although smaller mesopores are shown to have sufficient volumes to contain significant fractions of the total organic matter, only small fractions of total organic matter were found to reside in them. These results are consistent with preferential association between organic matter and aluminous clay particle edges, rather than the largely siliceous clay faces that contribute most surface area and form pore walls. While simple enclosure within smaller mesopores cannot, therefore, explain protection, network effects working at larger size scales may account for exclusion of digestive agents and hence organic matter protection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号