首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   2篇
测绘学   1篇
大气科学   4篇
地球物理   25篇
地质学   24篇
海洋学   5篇
天文学   19篇
自然地理   9篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2006年   6篇
  2005年   6篇
  2004年   7篇
  2003年   9篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有87条查询结果,搜索用时 46 毫秒
51.
The processes of solar wind sputtering and meteoritic impact vaporization have created materials in the lunar regolith which were deposited from a vapor phase. Although the quantity of such exotic condensed substances should theoretically be comparable with that of materials which have been melted by impacts, their existence in the fines has not been generally recognized. We have investigated the physical and chemical properties of materials deposited from vapors generated by hydrogen-ion sputtering and thermal evaporation of lunar and artificial ferrosilicates. Both processes are highly reducing. The deposits are enriched in Fe, have large, nonselective, optical absorptivities, and contain abundant sub-microscopic, superparamagnetic grains of metallic Fe which exhibit the characteristicg=2.1 ESR resonance. The sputter-deposited films are enriched in heavy elements. Thus the hypothesis that the lunar fines contain several percent of materials deposited from the vapor phase accounts in a natural manner for many of the unusual optical, physical and chemical properties of lunar soils. The vapor-deposits are probably concentrated in the agglutinate particles of the regolith.  相似文献   
52.
Riverine populations of shortnose sturgeon (Acipenser brevirostrum) once occurred in rivers and estuaries along the east coast of North America from the St. John River, New Brunswick, to the St. Johns River, Florida. Within this range, 19 population segments were identified by the U.S. Federal Shortnose Sturgeon Recovery Team; empirical data supporting this structure is limited. We obtained samples from 11 (12 including a small sample from the Cape Fear River, North Carolina) of these population segments and used PCR and direct sequence analysis of 440 base pairs of the mitochondrial DNA (mtDNA) control region to define the coast-wide genetic population structure of shortnose sturgeon. Collections from most population segments exhibited significant differences in haplotype frequencies with their nearest neighbors, including from the Ogeechee and Savannah Rivers, Georgia (despite the known movement of hatchery-reared offspring from the Savannah into the Ogeechee River). Collections from the Chesapeake Bay and Delaware River exhibited similar haplotype frequencies, suggesting that specimens collected in the Chesapeake Bay had dispersed from the Delaware River. Collections from the Kennebec River and Androscoggin River within a hypothesized single population segment did not exhibit significant differentiation of mtDNA haplotype frequencies. Haplotype frequencies were almost identical between collections from above and below the Holyoke Dam on the Connecticut River, indicating that these aggregations should be managed as a single unit. Our results support the population segment status afforded to shortnose sturgeon in at least the following 9 systems; St. John River, Kennebec-Androscoggin Rivers, upper-lower Connecticut River, Hudson River, Delaware River-Chesapeake Bay, Pee Dee River, Cooper River, Savannah River, and Ogeechee-Altamaha Rivers.  相似文献   
53.
Evidence for the presence of Sn2+ in an octahedral interstitial site in synthetic and natural cassiterite (SnO2) is presented. The absorption and relative absorption spectral peaks measured are similar to ones found in Sn2+-doped KI by absorption spectrophotometry and Sn2+-doped soda-silica glass by reflection spectroscopy. The estimated quantity of interstitial Sn2+ present is found by calculating that needed to balance the uncompensated M3+ impurity in substitutional Sn4+ sites where M3+ is mainly Al3+ and Fe3+. Estimates of the oscillator strengths of three Sn2+ bands detected by absorption spectrophotometry in the synthetic crystal are given. The interstitial Sn2+ content in synthetic and natural cassiterite is not affected by heating,60Co gamma irradiation, or UV light treatment with a high pressure xenon-mercury lamp.  相似文献   
54.
Cheryl Lans 《GeoJournal》2018,83(6):1425-1454
This paper reviews the plants used by Spanish speakers in Trinidad and Tobago as documented in a 1994 publication. The plant uses were reviewed to determine whether the plants and uses were different from other ethnic groups in Trinidad and the wider region and to draw conclusions from the review. The review covers 148 plants. With few exceptions, the plants were Native and so were the uses. Several plants have been little studied (Ambroisa cumanensis, Aristolochia rugosa, Bauhinia cumanensis, Bauhinia excisa, Begonia humilis, Croton conduplicatus, Croton flavens, Cyperus diffusus, Desmodium incanum, Fleurya aestuans, Heliconia bihai). The Cocoa Panyols retained the knowledge of at least two plants first described in the 1800s that were no longer mentioned to researchers in Trinidad and Tobago after 1981 by the rest of the population. The Cocoa Panyols preserved their cultural and linguistic heritage by concentrating on cocoa growing in rural areas and their movement from place to place to establish cocoa plantations may account for the uniformity of information on ethnomedicine in Trinidad, which additionally is similar to medicinal plant knowledge of the original populations of South America.  相似文献   
55.
Understanding of the role of oceanic input in nutrient loadings is important for understanding nutrient and phytoplankton dynamics in estuaries adjacent to coastal upwelling regions as well as determining the natural background conditions. We examined the nitrogen sources to Yaquina Estuary (Oregon, USA) as well as the relationships between physical forcing and gross oceanic input of nutrients and phytoplankton. The ocean is the dominant source of dissolved inorganic nitrogen (DIN) and phosphate to the lower portion of Yaquina Bay during the dry season (May through October). During this time interval, high levels of dissolved inorganic nitrogen (primarily in the form of nitrate) and phosphate entering the estuary lag upwelling favorable winds by 2 days. The nitrate and phosphate levels entering the bay associated with coastal upwelling are correlated with the wind stress integrated over times scales of 4–6 days. In addition, there is a significant import of chlorophyll a to the bay from the coastal ocean region, particularly during July and August. Variations in flood-tide chlorophyll a lag upwelling favorable winds by 6 days, suggesting that it takes this amount of time for phytoplankton to utilize the recently upwelled nitrogen and be transported across the shelf into the estuary. Variations in water properties determined by ocean conditions propagate approximately 11–13 km into the estuary. Comparison of nitrogen sources to Yaquina Bay shows that the ocean is the dominant source during the dry season (May to October) and the river is the dominant source during the wet season with watershed nitrogen inputs primarily associated with nitrogen fixation on forest lands.  相似文献   
56.
57.
The Coastal Storm Modeling System (CoSMoS) applies a predominantly deterministic framework to make detailed predictions (meter scale) of storm-induced coastal flooding, erosion, and cliff failures over large geographic scales (100s of kilometers). CoSMoS was developed for hindcast studies, operational applications (i.e., nowcasts and multiday forecasts), and future climate scenarios (i.e., sea-level rise + storms) to provide emergency responders and coastal planners with critical storm hazards information that may be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. The prototype system, developed for the California coast, uses the global WAVEWATCH III wave model, the TOPEX/Poseidon satellite altimetry-based global tide model, and atmospheric-forcing data from either the US National Weather Service (operational mode) or Global Climate Models (future climate mode), to determine regional wave and water-level boundary conditions. These physical processes are dynamically downscaled using a series of nested Delft3D-WAVE (SWAN) and Delft3D-FLOW (FLOW) models and linked at the coast to tightly spaced XBeach (eXtreme Beach) cross-shore profile models and a Bayesian probabilistic cliff failure model. Hindcast testing demonstrates that, despite uncertainties in preexisting beach morphology over the ~500 km alongshore extent of the pilot study area, CoSMoS effectively identifies discrete sections of the coast (100s of meters) that are vulnerable to coastal hazards under a range of current and future oceanographic forcing conditions, and is therefore an effective tool for operational and future climate scenario planning.  相似文献   
58.
We report on numerical experiments to test the sensitivity of Lagrangian coherent structures (LCSs), found by identifying ridges of the finite-time Lyapunov exponent (FTLE), to errors in two systems representing the California Current System (CCS). First, we consider a synthetic mesoscale eddy field generated from Fourier filtering satellite altimetry observations of the CCS. Second, we consider the full observational satellite altimetry field in the same region. LCS are found to be relatively insensitive to both sparse spatial and temporal resolution and to the velocity field interpolation method. Strongly attracting and repelling LCS are robust to perturbations of the velocity field of over 20% of the maximum regional velocity. Contours of the Okubo–Weiss (OW) parameter are found to be consistent with LCS in large mature eddies in the unperturbed systems. The OW parameter is unable to identify eddies at the uncertainty level expected for altimetry observations of the CCS. At this expected error level, the FTLE method is reliable for locating boundaries of large eddies and strong jets. Small LCS features such as lobes are not well resolved even at low error levels, suggesting that reliable determination of lobe dynamics from altimetry will be problematic.  相似文献   
59.
Apollo photographs indicate that the lunar disturbance effect is due to changes in the photometric function of the lunar soil caused by rearrangement of the soil particles, rather than to any physical or chemical differences between the uppermost layer and the underlying materials.Paper presented to the NATO Advanced Study Institute on Lunar Studies, Patras, Greece, September 1971.  相似文献   
60.
Bruce Hapke 《Icarus》1984,59(1):41-59
A mathematically rigorous formalism is derived by which an arbitrary photometric function for the bidirectional reflectance of a smooth surface may be corrected to include effects of general macroscopic roughness. The correction involves only one arbitrary parameter, the mean slope angle θ, and is applicable to surfaces of any albedo. Using physically reasonable assumptions and mathematical approximations the correction expressions are evaluated analytically to second order in θ. The correction is applied to the bidirectional reflectance function of B. Hapke (1981, J. Geophys. Res.86, 3039–3054). Expressions for both the differential and integral brightnesses are obtained. Photometric profiles on hypothetical smooth and rough planets of low and high albedo are shown to illustrate the effects of macroscopic roughness. The theory is applied to observations of Mercury and predicts the integral phase function, the apparent polar darkening, and the lack of limb brightness surge on the planet. The roughness-corrected bidirectional reflectance function is sufficiently simple that it can be conveniently evaluated on a programmable hand-held calculator.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号