首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27266篇
  免费   276篇
  国内免费   1001篇
测绘学   1467篇
大气科学   2323篇
地球物理   5264篇
地质学   12426篇
海洋学   1574篇
天文学   1923篇
综合类   2192篇
自然地理   1374篇
  2023年   12篇
  2022年   22篇
  2021年   47篇
  2020年   48篇
  2019年   63篇
  2018年   4821篇
  2017年   4093篇
  2016年   2680篇
  2015年   318篇
  2014年   246篇
  2013年   244篇
  2012年   1114篇
  2011年   2891篇
  2010年   2163篇
  2009年   2460篇
  2008年   2025篇
  2007年   2503篇
  2006年   198篇
  2005年   315篇
  2004年   503篇
  2003年   502篇
  2002年   346篇
  2001年   123篇
  2000年   130篇
  1999年   68篇
  1998年   66篇
  1997年   41篇
  1996年   25篇
  1995年   37篇
  1994年   19篇
  1993年   17篇
  1992年   21篇
  1991年   18篇
  1990年   18篇
  1989年   13篇
  1988年   14篇
  1987年   24篇
  1986年   15篇
  1985年   15篇
  1984年   28篇
  1983年   31篇
  1982年   22篇
  1981年   38篇
  1980年   44篇
  1979年   12篇
  1977年   16篇
  1976年   11篇
  1975年   15篇
  1974年   10篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
391.
A Permian (~265 Ma) intrusive complex which formed as a magmatic feeder reservoir to an immature island-arc volcano is fortuitously exposed in southern New Zealand. Known as the Greenhills Complex, this intrusion was emplaced at shallow crustal levels and consists of two layered bodies which were later intruded by a variety of dykes. Cumulates, which include dunite, olivine clinopyroxenite, olivine gabbro, and hornblende gabbro-norite, are related products of parent-magma fractionation. Both primary (magmatic) and secondary platinum-group minerals occur within dunite at one locality. Using the composition of cumulus minerals, mafic dykes and melt inclusions, we have determined that the parent magmas of the complex were hydrous, low-K island-arc tholeiites of ankaramitic affinities. Progressive magmatic differentiation of this parent magma generated fractionated melt of high-alumina basalt composition which is now preserved only as dykes which cut the Complex. Field evidence and cumulus mineral profiles reveal that the magma chambers experienced turbulent magmatic conditions during cumulate-rock formation. Recharge of the chambers by primitive magma is likely to have coincided with eruption of residual melt at the surface. Similar processes are inferred to account for volcanic-rock compositions in other parts of this arc terrane and in modern island-arc systems.  相似文献   
392.
393.
A daily rainfall dataset and the corresponding rainfall maps have been produced by objective analysis of rainfall data. The satellite estimate of rainfall and the raingauge values are merged to form the final analysis. Associated with epochs of monsoon these rainfall maps are able to show the rainfall activities over India and the Bay of Bengal region during the BOBMEX period. The intra-seasonal variations of rainfall during BOBMEX are also seen using these data. This dataset over the oceanic region compares well with other available popular datasets like GPCP and CMAP. Over land this dataset brings out the features of monsoon in more detail due to the availability of more local raingauge stations.  相似文献   
394.
Separate lead isotope analyses of leachate and residue fractions are applied to a broad spectrum of rocks commonly investigated in metallogenic studies. Resulting data highlight a systematic behavior of leachate and residue fractions with respect to lead isotope compositions, which essentially depends on the mineralogical composition of the rock. Granitoid and high-grade metamorphic rocks have residue compositions virtually identical to common lead. In contrast, low-grade metasedimentary rocks may have residue compositions swamped by radiogenic lead of leach-resistant zircons. Mafic magmatic rocks have residues that are often more radiogenic than leachates, depending on the ratio of leach-refractory zircons to common lead in the residual fraction of these rocks. Separate leachate and residue analyses of source rocks provide two lead isotope end members whose mixture may represent lead with the appropriate ore fluid composition. Our leaching experiments indicate that hot acid solutions (and by inference hydrothermal fluids) preferentially leach radiogenic lead from medium- to high-grade metamorphic and granitoid rocks, whereas they preferentially leach common lead from low-grade metasedimentary and mafic magmatic rocks. The method presented in this study provides a reliable alternative to other methods (i.e., age-correction of bulk-rock compositions) for the determination of the common lead signature of felsic to intermediate magmatic rocks. This may be preferable to age-corrected bulk-rock analyses, where ages to apply for corrections of bulk-rock data are not known or where moderately to highly altered rocks must be used. Case studies of orogenic gold and MVT districts of Peru (Pataz and San Vicente, respectively) show that separate leachate and residue lead isotope analyses carried out systematically on whole rocks allow a more thorough evaluation of metal source reservoirs than does the standard method of age-corrected or uncorrected bulk-rock analyses.  相似文献   
395.
396.
397.
Natural production of the radionuclide chlorine-36 (36Cl) has provided a valuable tracer for groundwater studies. The nuclear industry, especially the testing of thermonuclear weapons, has also produced large amounts of 36Cl that can be detected in many samples of groundwater. In order to be most useful in hydrologic studies, the natural production prior to 1952 should be distinguished from more recent artificial sources. The object of this study was to reconstruct the probable preanthropogenic levels of 36Cl in groundwater in the United States. Although significant local variations exist, they are superimposed on a broad regional pattern of 36Cl/Cl ratios in the United States. Owing to the influence of atmospherically transported ocean salt, natural ratios of 36Cl/total Cl are lowest near the coast and increase to a maximum in the central Rocky Mountains of the United States. Electronic Publication  相似文献   
398.
A 12-station temporary microearthquake network was established by the Geological Survey of India for aftershock monitoring of the January 26th, 2001 Bhuj earthquake (M w 7.6) in the Kutch district of Gujarat state, western India. The epicentres of the aftershocks show two major trends: one in the NE direction and the other in the NW direction. Fault-plane solutions of the best-located and selected cluster of events that occurred along the NE trend, at a depth of 15–38 km, show reverse faulting with a large left-lateral strike-slip motion, which are comparable with the main-shock solution. The NW trending upper crustal aftershocks at depth <10 km, on the other hand, show reverse faulting with right-lateral strike-slip motion, and the mid crustal and lower crustal aftershocks, at a depth of 15–38 km, show pure reverse faulting as well as reverse faulting with right-lateral and left-lateral strike-slip motions; these solutions are not comparable with the main-shock solution. It is inferred that the intersection of two faults has been the source area for stress concentration to generate the main shock and the aftershocks.  相似文献   
399.
The compatibility of vanadium (V) during mantle melting is a function of oxygen fugacity (fO2): at high fO2’s, V becomes more incompatible. The prospects and limitations of using the V content of peridotites as a proxy for paleo-fO2 at the time of melt extraction were investigated here by assessing the uncertainties in V measurements and the sensitivity of V as a function of degree of melt extracted and fO2. V-MgO and V-Al2O3 systematics were found to be sensitive to fO2 variations, but consideration of the uncertainties in measurements and model parameters indicates that V is sensitive only to relative fO2 differences greater than ∼2 log units. Post-Archean oceanic mantle peridotites, as represented by abyssal peridotites and obducted massif peridotites, have V-MgO and -Al2O3 systematics that can be modeled by 1.5 GPa melting between FMQ − 3 and FMQ − 1. This is consistent with fO2’s of the mantle source for mid-ocean ridge basalts (MORBs) as determined by the Fe3+ activity of peridotitic minerals and basaltic glasses. Some arc-related peridotites have slightly lower V for a given degree of melting than oceanic mantle peridotites, and can be modeled by 1.5 GPa melting at fO2’s as high as FMQ. However, the majority of arc-related peridotites have V-MgO systematics overlapping that of oceanic mantle peridotites, suggesting that although some arc mantle may melt under slightly oxidizing conditions, most arc mantle does not. The fact that thermobarometrically determined fO2’s in arc peridotites and lavas can be significantly higher than that inferred from V systematics, suggests that V retains a record of the fO2 during partial melting, whereas the activity of Fe3+ in arc peridotitic minerals and lavas reflect subsequent metasomatic overprints and magmatic differentiation/emplacement processes, respectively.Peridotites associated with middle to late Archean cratonic mantle are characterized by highly variable V-MgO systematics. Tanzanian cratonic peridotites have V systematics indistinguishable from post-Archean oceanic mantle and can be modeled by 3 GPa partial melting at ∼FMQ − 3. In contrast, many South African and Siberian cratonic peridotites have much lower V contents for a given degree of melting, suggesting at first glance that partial melting occurred at high fO2’s. More likely, however, their unusually low V contents for a given degree of melting may be artifacts of excess orthopyroxene, a feature that pervades many South African and Siberian peridotites but not the Tanzanian peridotites. This is indicated by the fact that the V contents of South African and Siberian peridotites are correlated with increases in SiO2 content, generating data arrays that cannot be modeled by partial melting but can instead be generated by the addition of orthopyroxene through processes unrelated to primary melt depletion. Correction for orthopyroxene addition suggests that the South African and Siberian peridotites have V-MgO systematics similar to those of Tanzanian peridotites. Thus, if the Tanzanian peridotites represent the original partial melting residues, and if the South African and Siberian peridotites have been modified by orthopyroxene addition, then there is no indication that Archean cratonic mantle formed under fO2’s significantly greater than that of modern oceanic mantle. Instead, the fO2’s inferred from the V systematics in these three cratonic peridotite suites are within range of modern oceanic mantle. This also suggests that the transition from a highly reducing mantle in equilibrium with a metallic core to the present oxidized state must have occurred by late Archean times.  相似文献   
400.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号