首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1910篇
  免费   76篇
  国内免费   19篇
测绘学   41篇
大气科学   131篇
地球物理   527篇
地质学   671篇
海洋学   181篇
天文学   301篇
综合类   6篇
自然地理   147篇
  2021年   20篇
  2020年   25篇
  2019年   25篇
  2018年   47篇
  2017年   39篇
  2016年   65篇
  2015年   38篇
  2014年   49篇
  2013年   91篇
  2012年   51篇
  2011年   73篇
  2010年   80篇
  2009年   80篇
  2008年   75篇
  2007年   85篇
  2006年   68篇
  2005年   58篇
  2004年   55篇
  2003年   55篇
  2002年   55篇
  2001年   36篇
  2000年   35篇
  1999年   33篇
  1998年   31篇
  1997年   36篇
  1996年   27篇
  1995年   31篇
  1994年   33篇
  1993年   16篇
  1992年   32篇
  1991年   30篇
  1990年   39篇
  1989年   26篇
  1988年   24篇
  1987年   19篇
  1986年   22篇
  1985年   35篇
  1984年   42篇
  1983年   28篇
  1982年   25篇
  1981年   33篇
  1980年   28篇
  1979年   23篇
  1978年   22篇
  1977年   17篇
  1976年   16篇
  1975年   15篇
  1974年   18篇
  1973年   15篇
  1971年   12篇
排序方式: 共有2005条查询结果,搜索用时 15 毫秒
981.
Unconfined scaled laboratory experiments show that 3D structures control the behavior of dilute pyroclastic density currents (PDCs) during and after liftoff. Experiments comprise heated and ambient temperature 20 μm talc powder turbulently suspended in air to form density currents within an unobstructed 8.5?×?6?×?2.6-m chamber. Comparisons of Richardson, thermal Richardson, Froude, Stokes, and settling numbers and buoyant thermal to kinetic energy densities show good agreement between experimental currents and dilute PDCs. The experimental Reynolds numbers are lower than those of PDCs, but the experiments are fully turbulent; thus, the large-scale dynamics are similar between the two systems. High-frequency, simultaneous observation in three orthogonal planes shows that the currents behave very differently than previous 2D (i.e., confined) currents. Specifically, whereas ambient temperature currents show radial dispersal patterns, buoyancy reversal, and liftoff of heated currents focuses dispersal along narrow axes beneath the rising plumes. The aspect ratios, defined as the current length divided by a characteristic width, are typically 2.5–3.5 in heated currents and 1.5–2.5 in ambient temperature currents, reflecting differences in dispersal between the two types of currents. Mechanisms of air entrainment differ greatly between the two currents: entrainment occurs primarily behind the heads and through the upper margins of ambient temperature currents, but heated currents entrain air through their lateral margins. That lateral entrainment is much more efficient than the vertical entrainment, >0.5 compared to ~0.1, where entrainment is defined as the ratio of cross-stream to streamwise velocity. These experiments suggest that generation of coignimbrite plumes should focus PDCs along narrow transport axes, resulting in elongate rather than radial deposits.  相似文献   
982.
雷国辉  孙华圣  吴宏伟 《岩土力学》2014,35(5):1224-1230
通过Flamant和Melan的解析解答、Mindlin解答的积分蜕化公式以及有限元数值分析计算结果,展示了在半无限平面问题中线荷载作用方向位移解答的不确定性。线荷载作用方向没有绝对位移,只有相对位移,但相对位移会随着与位移约束参考点距离的增大而增大,或随着线荷载在垂直于半平面方向分布长度的增大而增大,不具收敛性。这意味着,在解析和数值分析中,纯粹的半平面问题的位移解答具有多值性,因此,将岩土工程问题作为半空间问题进行分析是必要的。  相似文献   
983.
The Asymmetric Friction Connection (AFC) remains elastic during moderate earthquake shaking but slides and dissipates energy through friction during severe earthquake shaking. The sliding friction forces developed are dependent on the clamping force in the connection which is provided by fully tensioned bolts which pass through slotted holes. During sliding these bolts are subject to moment and shear as well as axial force. Moment–shear–axial force interaction reduces the clamping axial force on the sliding interfaces thereby reducing the sliding shear resistance (Vss). Two methods to evaluate the moment–shear–axial force interaction have been proposed so that the sliding shear strength can be quantified, but as yet, these methods are not robust. This paper describes the results of 60 tests undertaken to improve the two methods, namely the moment–shear–axial force bolt model and the effective coefficient of friction method, for AFCs with high hardness steel shims. The bolts were M16 to M30 bolts and cleat thicknesses ranged from 12 mm to 25 mm. It is shown that either method may be used in design as the results obtained are similar. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
984.
褶皱逆冲带的几何学研究是造山带研究的热点,但是无论是传统构造地质学方法还是地球物理学方法都在研究褶皱逆冲带几何特征时存在多解性.为了制约这种多解性,本文以天山北麓的呼图壁河剖面为列,介绍一种地质与地球物理相结合的研究方法.该方法首先沿呼图壁河剖面进行详细的地表观测,获取地表的构造地质数据形成初步的地质模型,其次结合地表构造和钻井分层数据,对收集到的石油地震剖面进行重新解释.然而,地震反射数据只分布在盆地内部,在盆山结合带缺失或者不清晰,因此对该剖面进行了重力测量并计算出布格重力异常.结合盆地各沉积地层和基底密度值,用重力正演方法模拟呼图壁河剖面的密度结构.研究结果显示沿呼图壁河剖面并不存在天山北缘断裂,盆地的沉积盖层可以从准噶尔盆地连续过度到天山内部并不整合覆盖在天山古生代基底之上.这一结果与西段金钩河剖面的天山基底逆冲到准噶尔盆地显然不同,说明了天山北缘盆山结合带构造的多样性.利用平衡剖面技术,恢复的呼图壁河平衡剖面缩短量约为4.8 km,对比前人研究,说明了天山北缘的缩短量沿东西方向存在显著的不均一性.本研究也说明这种构造地质与地震及非震地球物理相结合的方法可以广泛地被应用于褶皱逆冲带.  相似文献   
985.
We present a detrending algorithm for the removal of trends in time series. Trends in time series could be caused by various systematic and random noise sources such as cloud passages, changes of airmass, telescope vibration, CCD noise or defects of photometry. Those trends undermine the intrinsic signals of stars and should be removed. We determine the trends from subsets of stars that are highly correlated among themselves. These subsets are selected based on a hierarchical tree clustering algorithm. A bottom-up merging algorithm based on the departure from normal distribution in the correlation is developed to identify subsets, which we call clusters. After identification of clusters, we determine a trend per cluster by weighted sum of normalized light curves. We then use quadratic programming to detrend all individual light curves based on these determined trends. Experimental results with synthetic light curves containing artificial trends and events are presented. Results from other detrending methods are also compared. The developed algorithm can be applied to time series for trend removal in both narrow and wide field astronomy.  相似文献   
986.
Many current and future astronomical surveys will rely on samples of strong gravitational lens systems to draw conclusions about galaxy mass distributions. We use a new strong lensing pipeline (presented in Paper I of this series) to explore selection biases that may cause the population of strong lensing systems to differ from the general galaxy population. Our focus is on point-source lensing by early-type galaxies with two mass components (stellar and dark matter) that have a variety of density profiles and shapes motivated by observational and theoretical studies of galaxy properties. We seek not only to quantify but also to understand the physics behind selection biases related to: galaxy mass, orientation and shape; dark matter profile parameters such as inner slope and concentration; and adiabatic contraction. We study how all of these properties affect the lensing Einstein radius, total cross-section, quad/double ratio and image separation distribution, with a flexible treatment of magnification bias to mimic different survey strategies. We present our results for two families of density profiles: cusped and deprojected Sérsic models. While we use fixed lens and source redshifts for most of the analysis, we show that the results are applicable to other redshift combinations, and we also explore the physics of how our results change for very different redshifts. We find significant (factors of several) selection biases with mass; orientation, for a given galaxy shape at fixed mass; cusped dark matter profile inner slope and concentration; concentration of the stellar and dark matter deprojected Sérsic models. Interestingly, the intrinsic shape of a galaxy does not strongly influence its lensing cross-section when we average over viewing angles. Our results are an important first step towards understanding how strong lens systems relate to the general galaxy population.  相似文献   
987.
988.
In recent years field experiments have been undertaken in the lower atmosphere to perform a priori tests of subgrid-scale (SGS) models for large-eddy simulations (LES). The experimental arrangements and data collected have facilitated studies of variables such as the filtered strain rate, SGS stress and dissipation, and the eddy viscosity coefficient. However, the experimental set-ups did not permit analysis of the divergence of the SGS stress (the SGS force vector), which is the term that enters directly in the LES momentum balance equations. Data from a field experiment (SGS2002) in the west desert of Utah, allows the calculation of the SGS force due to the unique 4 × 4 sonic anemometer array. The vector alignment of the SGS force is investigated under a range of atmospheric stabilities. The eddy viscosity model is likely aligned with the measured SGS force under near-neutral and unstable conditions, while its performance is unsatisfactory under stable conditions.  相似文献   
989.
A two-layer theory is used to investigate (1) the steering of upper ocean current pathways by topographically constrained abyssal currents that do not impinge on the bottom topography and (2) its application to upper ocean – topographic coupling via flow instabilities where topographically constrained eddy-driven deep mean flows in turn steer the mean pathways of upper ocean currents and associated fronts. In earlier studies the two-layer theory was applied to ocean models with low vertical resolution (2–6 layers). Here we investigate its relevance to complex ocean general circulation models (OGCMs) with high vertical resolution that are designed to simulate a wide range of ocean processes. The theory can be easily applied to models ranging from idealized to complex OGCMs, provided it is valid for the application. It can also be used in understanding some persistent features seen in observed ocean frontal pathways (over deep water) derived from satellite imagery and other data. To facilitate its application, a more thorough explanation of the theory is presented that emphasizes its range of validity. Three regions of the world ocean are used to investigate its application to eddy-resolving ocean models with high vertical resolution, including one where an assumption of the two-layer theory is violated. Results from the OGCMs with high vertical resolution are compared to those from models with low vertical resolution and to observations. In the Kuroshio region upper ocean – topographic coupling via flow instabilities and a modest seamount complex are used to explain the observed northward mean meander east of Japan where the Kuroshio separates from the coast. The Japan/East Sea (JES) is used to demonstrate the impact of upper ocean – topographic coupling in a relatively weak flow regime. East of South Island, New Zealand, the Southland Current is an observed western boundary current that flows in a direction counter to the demands of Sverdrup flow and counter to the direction simulated in nonlinear global flat bottom and reduced gravity models. A model with high vertical resolution (and topography extending through any number of layers) and a model with low vertical resolution (and vertically compressed but otherwise realistic topography confined to the lowest layer) both simulate a Southland Current in the observed direction with dynamics depending on the configuration of the regional seafloor. However, the dynamics of these simulations are very different because the Campbell Plateau and Chatham Rise east and southeast of New Zealand are rare features of the world ocean where the topography intrudes into the stratified water column over a relatively broad area but lies deeper than the nominal 200 m depth of the continental shelf break, violating a limitation of the two-layer theory. Observations confirm the results from the high vertical resolution model. Overall, the model simulations show increasingly widespread upper ocean – topographic coupling via flow instabilities as the horizontal resolution of the ocean models is increased, but fine resolution of mesoscale variability and the associated flow instabilities are required to obtain sufficient coupling. As a result, this type of coupling is critical in distinguishing between eddy-resolving and eddy-permitting ocean models in regions where it occurs.  相似文献   
990.
In offshore engineering, pile foundations are commonly constructed in marine deposits to support various structures such as offshore platforms. These piles are subjected to lateral cyclic loading due to wind, wave action, and drag load from ships. In this paper, centrifuge model tests are conducted to investigate the response of the existing single piles due to lateral cyclic loading. The cyclic loading was simulated by a hydraulic actuator. It is found that the residual lateral movement and bending strain are induced in the existing pile after each loading–unloading cycle. This is because plastic deformation is induced in the soil surrounding the existing pile during each loading–unloading cycle. By increasing the applied loads during cyclic loading–unloading process, the lateral movements and bending strains induced in the pile head increase simultaneously. As the cyclic loading varies from 10 to 50 kN, the residual pile head movement increases from 40 to 154?mm, and the residual bending strain of the existing pile varies from 100 to 260 με. The ratio of residual to the maximum pile head movements varies from 0.17 to 0.22, while the ratio of residual to the maximum bending strains is in a range of 0.12–0.55.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号