首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2575篇
  免费   346篇
  国内免费   407篇
测绘学   232篇
大气科学   328篇
地球物理   709篇
地质学   1101篇
海洋学   359篇
天文学   125篇
综合类   170篇
自然地理   304篇
  2024年   10篇
  2023年   40篇
  2022年   110篇
  2021年   123篇
  2020年   115篇
  2019年   115篇
  2018年   152篇
  2017年   130篇
  2016年   129篇
  2015年   124篇
  2014年   155篇
  2013年   139篇
  2012年   134篇
  2011年   163篇
  2010年   143篇
  2009年   149篇
  2008年   125篇
  2007年   112篇
  2006年   91篇
  2005年   80篇
  2004年   77篇
  2003年   83篇
  2002年   119篇
  2001年   105篇
  2000年   77篇
  1999年   53篇
  1998年   72篇
  1997年   66篇
  1996年   38篇
  1995年   48篇
  1994年   33篇
  1993年   32篇
  1992年   36篇
  1991年   19篇
  1990年   11篇
  1989年   18篇
  1988年   10篇
  1987年   9篇
  1986年   4篇
  1985年   8篇
  1984年   6篇
  1983年   6篇
  1982年   5篇
  1981年   7篇
  1980年   10篇
  1979年   7篇
  1978年   8篇
  1976年   3篇
  1975年   5篇
  1973年   3篇
排序方式: 共有3328条查询结果,搜索用时 31 毫秒
91.
It has been well studied that the γ-function explicit method can be effective in providing favorable numerical dissipation for linear elastic systems. However, its performance for nonlinear systems is unclear due to a lack of analytical evaluation techniques. Thus, a novel technique is proposed herein to evaluate its efficiency for application to nonlinear systems by introducing two parameters to describe the stiffness change. As a result, the numerical properties and error propagation characteristics of the γ-function explicit method for the pseudodynamic testing of a nonlinear system are analytically assessed. It is found that the upper stability limit decreases as the step degree of nonlinearity increases; and it increases as the current degree of nonlinearity increases. It is also shown that this integration method provides favorable numerical dissipation not only for linear elastic systems but also for nonlinear systems. Furthermore, error propagation analysis reveals that the numerical dissipation can effectively suppress the severe error propagation of high frequency modes while the low frequency responses are almost unaffected for both linear elastic and nonlinear systems.  相似文献   
92.
格尔木井水温异常特征及其与地震关系分析   总被引:1,自引:1,他引:1  
简要介绍了格尔木井水温动态观测的环境与条件,在研究正常动态特征和影响因素的基础上,对水温异常的映震关系进行了分析,并成功地进行了一次短临地震趋势预测。探讨了水温异常的形成原因。  相似文献   
93.
The purpose of this study is to apply time series analysis to investigate whether the groundwater quality in the coastal area is affected by the tide. Continuous and regular in situ monitoring data of electrical conductivity (EC) and groundwater level, and tidal level data measured by the National Oceanographic Research Institute were used for the time series analysis. Through the time series analysis, it is known that EC and groundwater level conspicuously fluctuate with two periodicities (15.4 and 0.52-day), which is very similar to those of the tide. Also the behaviors of their fluctuations vary in accordance with the tidal period. These indicate that the groundwater quality has been mainly controlled by the tidal level, and the strength of tidal effect on the groundwater quality is different according to the tidal period.  相似文献   
94.
Least-squares wave-path migration   总被引:2,自引:0,他引:2  
We present a new least-squares migration method called least-squares wave-path migration. The proposed method combines an iterative conjugate-gradient solver with a stationary-phase wave-path migration operator. Numerical tests demonstrate that (i) least-squares wave-path migration is computationally more efficient than and almost as accurate as Kirchhoff least-squares migration, and (ii) many of the artefacts seen in wave-path migration images are suppressed after several conjugate-gradient iterations. Previous results have shown that 3D wave-path migration is up to 100 times faster than a standard 3D Kirchhoff migration, but sometimes at the cost of reduced quality. With the proposed least-squares wave-path migration method, the image quality in wave-path migration can be improved at an acceptable increase in computational cost.  相似文献   
95.
96.
Multi‐step ahead inflow forecasting has a critical role to play in reservoir operation and management in Taiwan during typhoons as statutory legislation requires a minimum of 3‐h warning to be issued before any reservoir releases are made. However, the complex spatial and temporal heterogeneity of typhoon rainfall, coupled with a remote and mountainous physiographic context, makes the development of real‐time rainfall‐runoff models that can accurately predict reservoir inflow several hours ahead of time challenging. Consequently, there is an urgent, operational requirement for models that can enhance reservoir inflow prediction at forecast horizons of more than 3 h. In this paper, we develop a novel semi‐distributed, data‐driven, rainfall‐runoff model for the Shihmen catchment, north Taiwan. A suite of Adaptive Network‐based Fuzzy Inference System solutions is created using various combinations of autoregressive, spatially lumped radar and point‐based rain gauge predictors. Different levels of spatially aggregated radar‐derived rainfall data are used to generate 4, 8 and 12 sub‐catchment input drivers. In general, the semi‐distributed radar rainfall models outperform their less complex counterparts in predictions of reservoir inflow at lead times greater than 3 h. Performance is found to be optimal when spatial aggregation is restricted to four sub‐catchments, with up to 30% improvements in the performance over lumped and point‐based models being evident at 5‐h lead times. The potential benefits of applying semi‐distributed, data‐driven models in reservoir inflow modelling specifically, and hydrological modelling more generally, are thus demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
97.
Agricultural sediment and pesticide runoff is a widespread ecological and human health concern. Numerical simulation models, such as Root Zone Water Quality Model (RZWQM) and Pesticide Root Zone Model (PRZM), have been increasingly used to quantify off‐site agricultural pollutant movement. However, RZWQM has been criticized for its inability to simulate sedimentation processes. The recent incorporation of the sedimentation module of Groundwater Loading Effects of Agricultural Management Systems has enabled RZWQM to simulate sediment and sediment‐associated pesticides. This study compares the sediment and pesticide transport simulation performance of the newly released RZWQM and PRZM using runoff data from 2 alfalfa fields in Davis, California. A composite metric (based on coefficient of determination, Nash–Sutcliffe efficiency, index of agreement, and percent bias) was developed and employed to ensure robust, comprehensive assessment of model performance. Results showed that surface water runoff was predicted reasonably well (absolute percent bias <31%) by RZWQM and PRZM after adjusting important hydrologic parameters. Even after calibration, underestimation bias (?89% ≤ PBIAS  ≤ ?36%) for sediment yield was observed in both models. This might be attributed to PRZM's incorrect distribution of input water and uncertainty in RZWQM's runoff erosivity coefficient. Moreover, the underestimation of sediment might be less if the origin of measured sediment was considered. Chlorpyrifos losses were simulated with reasonable accuracy especially for Field A (absolute PBIAS  ≤ 22%), whereas diuron losses were underestimated to a great extent (?98% ≤ PBIAS  ≤ ?65%) in both models. This could be attributed to the underprediction of herbicide concentration in the top soil due to the limitations of the instantaneous equilibrium sorption model as well as the high runoff potential of herbicide formulated as water‐dispersible granules. RZWQM and PRZM partitioned pesticides into the water and sediment phases similarly. According to model predictions, the majority of pesticide loads were carried via the water phase. On the basis of this study, both RZWQM and PRZM performed well in predicting runoff that carried highly adsorptive pesticides on an event basis, although the more physically based RZWQM is recommended when field‐measured soil hydraulic properties are available.  相似文献   
98.
Subsurface dams are rather effective and used for the prevention of saltwater intrusion in coastal regions around the world. We carried out the laboratory experiments to investigate the elevation of saltwater wedge after the construction of subsurface dams. The elevation of saltwater wedge refers to the upward movement of the downstream saltwater wedge because the subsurface dams obstruct the regional groundwater flow and reduce the freshwater discharge. Consequently, the saltwater wedge cannot further extend in the longitudinal direction but rises in the vertical profile resulting in significant downstream aquifer salinization. In order to quantitatively address this issue, field-scale numerical simulations were conducted to explore the influence of various dam heights, distances, and hydraulic gradients on the elevation of saltwater wedge. Our investigation shows that the upward movement of the saltwater wedge and its areal extension in the vertical domain of the downstream aquifer become more severe with a higher dam and performed a great dependence on the freshwater discharge. Furthermore, the increase of the hydraulic gradient and the dam distance from the sea boundary leads to a more pronounced wedge elevation. This phenomenon comes from the variation of the freshwater discharge due to the modification of dam height, location, and hydraulic gradient. Large freshwater discharge can generate greater repulsive force to restrain the elevation of saltwater wedge. These conclusions provide theoretical references for the behaviour of the freshwater–seawater interface after the construction of subsurface dams and help optimize the design strategy to better utilize the coastal groundwater resources.  相似文献   
99.
100.
Evapotranspiration (ET) is an important expenditure in water and energy balances, especially on cold and high‐altitude land surfaces. Daily ET of the upper reach of the Shule River Basin was estimated using Landsat 5 TM data and the Surface Energy Balance Algorithm for Land (SEBAL) model. Based on observations made at the Suli station, the algorithms of land surface temperature and soil heat flux in SEBAL were modified. Land surface temperature was retrieved and compared with ground truth via three methods: the radiative transfer equation method, the mono‐window algorithm, and the single‐channel method. We selected the best of these methods, mono‐window algorithm, for estimating ET. The average error of daily ET estimated by the modified SEBAL model and measured by the eddy covariance system was 16.4%, with a root‐mean‐square error of 0.52 mm d?1. The estimated ET means were 3.09, 2.48, and 1.48 mm d?1 on June 9 (DOY 160), June 25 (DOY 176), and July 27 (DOY 208) of the year 2010, respectively. The average estimated ET on the glacier surface of all days was more than 3 mm d?1, a measurement that is difficult to capture in‐situ and has rarely been reported. This study will improve the understanding of water balance in cold, high‐altitude regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号