Generation, migration and accumulation of petroleum in a sedimentary basin is a function of geologic, hydrodynamic and thermodynamic development of the basin and the type and amount of organic matter. Temperature history not only determines rate of hydrocarbon generation, but also affects paleohydrodynamics and physical and thermal properties vs depth relationships. Therefore, paleotemperature is the most important parameter. Paleohydrodynamics together with geologic history of the basin is important in shaping secondary migration patterns and accumulation of hydrocarbons.Quantification of all the above processes is complicated. Steps in constructing a deterministic dynamic model for calculation of petroleum potential during a sedimentary basin development are stated and analyzed in this paper. The effect of paleotemperature variations on petroleum generation and on physical properties of sedimentary sequences are illustrated by numerical examples. Computer models will enable exploration geologists to make quantitative exploration predictions in sedimentary basins. 相似文献
This study Investigates a tracing method using dissolved noble gases to survey the groundwater flow in a large groundwater basin. The tracing method is based on measuring the concentrations of noble gases and the ratio of helium isotopes in groundwater samples. Since it is very difficult to detect trace amounts of noble gases and helium with high accuracy in a 15-ml groundwater sample, dissolved gases were extracted and purified, then a high-resolution mass spectrometer was used for measurement and comparison with standard samples. We used this method with samples from a confined aquifer formed by the deposition of pyroclastic flow in the Kumamoto Plain on the west side of Mt. Aso in central Kyushu, Japan. The groundwater basin under the plain is divided into four small basins, based on the helium concentrations and isotope ratios, with two major groundwater flows. One flow is buried by the Aso pyroclastic flow along the old Kase River; the other is along the Tsuboi River Valley. These two groundwater flows were identified from the different helium isotope-ratios. The helium component from the deep mantle is mixed into the groundwater under the Kumamoto Plain. Finally, data on the concentrations and ratios of3He to4He in groundwater samples were used to determine the location of faults in the volcanic aquifer. 相似文献
The current practice of slope stability analysis for a municipal solid waste (MSW) landfill usually overlooks the dependence of waste properties on the fill age or embedment depth. Changes in shear strength of MSW as a function of fill age were investigated by performing field and laboratory studies on the Suzhou landfill in China. The field study included sampling from five boreholes advanced to the bottom of the landfill, cone penetration tests and monitoring of pore fluid pressures. Twenty-six borehole samples representative of different fill ages (0 to 13 years) were used to perform drained triaxial compression tests. The field and laboratory study showed that the waste body in the landfill can be sub-divided into several strata corresponding to different ranges of fill age. Each of the waste strata has individual composition and shear strength characteristics. The triaxial test results showed that the MSW samples exhibited a strain-hardening and contractive behavior. As the fill age of the waste increased from 1.7 years to 11 years, the cohesion mobilized at a strain level of 10% was found to decrease from 23.3 kPa to 0 kPa, and the mobilized friction angle at the same strain level increasing from 9.9° to 26°. For a confinement stress level greater than 50 kPa, the shear strength of the recently-placed MSW seemed to be lower than that of the older MSW. This behavior was consistent with the cone penetration test results. The field measurement of pore pressures revealed a perched leachate mound above an intermediate cover of soils and a substantial leachate mound near the bottom of the landfill. The measurements of shear strength properties and pore pressures were utilized to assess the slope stability of the Suzhou landfill. 相似文献
The noble gases He, Ne, Ar, Kr and Xe and also K and Ba were measured in the Apollo 11 igneous rocks 10017 and 10071, and in an ilmenite and two feldspar concentrates separated from rock 10071. Whole rock K/Ar ages of rocks 10017 and 10071 are (2350 ± 60) × 106 yr and (2880 ± 60) × 106 yr, respectively. The two feldspar concentrates of rock 10071 have distinctly higher ages: (3260 ± 60) × 106 yr and (3350 ± 70) × 106 yr. These ages are still 10 per cent lower than the Rb/Sr age obtained by Papanastassiouet al. (1970) and some Ar40 diffusion loss must have occurred even in the relatively coarse-grained feldspar.The relative abundance patterns of spallation Ne, Ar, Kr and Xe are in agreement with the ratios predicted from meteoritic production rates. However, diffusion loss of spallation He3 is evident in the whole rock samples, and even more in the feldspar concentrates. The ilmenite shows little or no diffusion loss. The isotopic composition of spallation Kr and Xe is similar to the one observed in meteorites. Small, systematic differences in the spallation Kr spectra of rocks 10017 and 10071 are due to variations in the irradiation hardness (shielding). The Kr spallation spectra in the mineral concentrates are different from the whole rock spectra and also show individual variations, reflecting the differences in target element composition. The relative abundance of cosmic ray produced Xe131 differs by nearly 50 per cent in the two rocks. The other Xe isotopes show no variations of similar magnitude. The origin of the Xe131 yield variability is discussed.Kr81 was measured in all the samples investigated. The Kr81/Kr exposure ages of rocks 10017 and 10071 are (480 ± 25) × 106 yr and (350 ± 15) × 106 yr, respectively. Exposure ages derived from spallation Ne21, Ar38, Kr83 and Xe126 are essentially in agreement with the Kr81/Kr ages. The age of rock 10071 might be somewhat low because of a possible recent exposure of our sample to solar flare particles. 相似文献
Bentonite clay is a micro-inhomogeneous material, which consists of clay minerals (mainly montmorillonite), macro-grains (mainly quartz), water, air and others. Properties of the saturated bentonite clay are essentially characterized by the montmorillonite and water (i.e. montmorillonite hydrate). We analyze the molecular behavior of sodium montmorillonite hydrate Na1/3Al2[Si11/3Al1/3]O10(OH)2·nH2O by applying a molecular dynamics (MD) simulation method. And by using the MD results we calculate the swelling property of the montmorillonite hydrate, and compare with an experimental result. Next, by using the same MD procedure we treat a montmorillonite mineral with a large number of external water molecules to check the properties of the water. Here we treat pure- and salt-water. Then we calculate the diffusivity and viscosity of water molecules and Na+ and Cl− ions.
For extending the microscopic characteristics of constituent materials to a macroscopic seepage behavior of the micro-inhomogeneous material we apply a homogenization analysis (HA). That is, starting with the Navier–Stokes equation with distributed viscosity that is calculated by the former MD procedure we determine macroscopic permeability characteristics of bentonite for both cases of pure- and salt-water. Then, by using the permeability property we calculate long-term consolidation behavior of buffering clay, which is planed to be used for high-level radioactive waste (HLRW) management. Here the deformation is treated under the well-defined Cam clay model. 相似文献
Solar Physics - In this paper we present in situ observations of the heliospheric plasma sheet (HPS) from STEREO-A, Wind, and STEREO-B over four solar rotations in the declining phase of... 相似文献
In order to better understand the Mesozoic tectonic evolution of Southeast China Block (SECB in short), this paper describes geological features of Mesozoic basins that are widely distributed in the SECB. The analyzed data are derived from a regional geological investigation on various Mesozoic basins and a recently compiled 1:1,500,000 geological map of Mesozoic–Cenozoic basins. Two types of basin are distinguished according to their tectonic settings, namely, the post-orogenic basin (Type I) and the intracontinental extensional basin (Type II); the latter includes the graben and the half-graben or faulted-depression basins. Our studies suggest that the formation of these basins connects with the evolution of geotectonics of the SECB. The post-orogenic basin (Type I) was formed in areas from the piedmont to the intraland during the interval from Late Triassic to Early Jurassic; and the formation of the intracontinental extensional basin (Type II) connects with an intracontinental crustal thinning setting in the Late Mesozoic. The graben basin was generated during the Middle Jurassic and is associated with a bimodal volcanic eruption; and the half-graben or faulted-depression basin, filled mainly by the rhyolite, tuff and sedimentary rocks during Early Cretaceous, is occupied by the Late Cretaceous–Paleogene red-colored terrestrial clastic rocks. We noticed that the modern outcrops of numerous granites and basins occur in a similar level, and the Mesozoic granitic bodies contact with the adjacent basins by large normal faults, suggesting that the modern landforms between granites and basins were yielded by the late crustal movement. The modern basin and range framework was settled down in the Cretaceous. Abundant sedimentary structures are found in the various basins, from that the deposited environments and paleo-currents are concluded; during the Late Triassic–Early Jurassic time, the source areas were situated to the north and northeast sides of the outcrop region. In this paper, we present the study results on one geological and geographical separating unit and two separating fault zones. The Wuyi orogenic belt is a Late Mesozoic paleo-geographically separating unit, the Ganjiang fault zone behaves as the western boundary of Early Cretaceous volcanic rocks, and the Zhenghe–Dapu fault zone separates the SE-China Coastal Late Mesozoic volcanic-sedimentary basins and the Wuyi orogenic belt. Finally, we discuss the geodynamic mechanisms forming various basins, proposing a three-stage model of the Mesozoic sedimentary evolution. 相似文献
A convenient integral formulation (-integrals) proves useful in describing reflection effects where there is an axisymmetric illumination, and the form of the emergent intensity distribution of the reflected component can be approximated by a cosine series. The formulation is applied to close binary systems where theoretical curves for the reflected light variation are considered. The treatment proceeds to the fifth power in the fractional dimensions — i.e. including combination of the leading terms of reflection with physical distortion of the components — and is therefore consistent with the usual first order theory of photometric proximity effects in close binary systems. 相似文献