首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3308篇
  免费   142篇
  国内免费   82篇
测绘学   166篇
大气科学   359篇
地球物理   670篇
地质学   1096篇
海洋学   344篇
天文学   613篇
综合类   24篇
自然地理   260篇
  2023年   10篇
  2022年   13篇
  2021年   33篇
  2020年   46篇
  2019年   48篇
  2018年   91篇
  2017年   67篇
  2016年   122篇
  2015年   70篇
  2014年   105篇
  2013年   155篇
  2012年   146篇
  2011年   176篇
  2010年   151篇
  2009年   206篇
  2008年   210篇
  2007年   186篇
  2006年   176篇
  2005年   164篇
  2004年   145篇
  2003年   129篇
  2002年   113篇
  2001年   92篇
  2000年   90篇
  1999年   76篇
  1998年   94篇
  1997年   54篇
  1996年   50篇
  1995年   36篇
  1994年   32篇
  1993年   37篇
  1992年   24篇
  1991年   37篇
  1990年   15篇
  1989年   19篇
  1988年   10篇
  1987年   25篇
  1986年   13篇
  1985年   22篇
  1984年   28篇
  1983年   24篇
  1982年   16篇
  1981年   10篇
  1980年   15篇
  1979年   11篇
  1978年   9篇
  1977年   13篇
  1976年   14篇
  1975年   13篇
  1973年   9篇
排序方式: 共有3532条查询结果,搜索用时 468 毫秒
991.
A kilometre-scale shear zone is recognized in the Cambro–Ordovician schist of the Bossòst dome, a Variscan metamorphic and structural dome in the Axial Zone of the central Pyrenees. Non-coaxial deformation is recorded by rotated garnet and staurolite porphyroblasts following regional metamorphism M1, while coaxial conditions prevailed during later contact metamorphic M2 growth of andalusite and cordierite. Mineral compositions and bulk rock analyses show that garnet–staurolite–andalusite–cordierite assemblages are significantly enriched in Mg and Mn over the garnet–staurolite assemblage, which lacks sufficient Mg for cordierite to form. The garnet–staurolite assemblage preserves conditions during M1, estimated by AFM diagrams and PT pseudosections to be 5.5 kbar and 580 °C, respectively. Pseudosections also indicate that staurolite is not a stable phase in cordierite–andalusite assemblages of M2, suggesting polyphase metamorphism and decompression along a clockwise PT path for the staurolite–cordierite–andalusite assemblages. This concurs with proposed extensional tectonics along the regional shear zone. To cite this article: J.E. Mezger et al., C. R. Geoscience 336 (2004).  相似文献   
992.
Afforestation is considered an important option for mitigation of greenhousegas emissions. Recently, plantation projects have been suggested for inclusionunder the Clean Development Mechanism. While considered a cheap option,significant uncertainties make it difficult to determine the (net) carbonbenefits and profitability of forestry projects. The current uncertaintiesabout the regulatory framework of the CDM and the environmental and economicperformance of plantation forestry could create uncertainties with respect tothe additionality of such projects and thus their acceptance under themechanism.Six plantation forestry projects that were proposed in Brazil have been usedas cases to study sources of uncertainty for carbon benefits and economics forsuch projects. These cases vary widely in terms of productivity and productsdelivered. A quantitative model for calculating greenhouse gas balances andfinancial benefits and costs, taking a broad range of variables into account,was developed. Data from the developers of the proposed projects was used asmain source material. Subsequently, scenario's were evaluated, containingdifferent and realistic options for baseline vegetation, carbon creditingsystems and CDM modalities, fluctuations in product prices, discount rates andcarbon prices.The real cost of combined carbon sequestration and substitution for the caseprojects was below $3 per ton of carbon avoided, when based exclusivelyon data supplied by project developers. However, potential variations incarbon impact and costs based on scenario options were very large. Differentbaseline vegetation or adopting a different discount rate cause carbon creditsto vary by as much as an order of magnitude. Different carbon crediting systemsor fluctuations in (commodity) product prices cause variations up to200% in carbon credits and NPV. This makes the additionality of suchprojects difficult to determine. Five of the six case projects seem uneligiblefor development under the CDM. A critical attitude towards the use ofplantation projects under the CDM seems justified.  相似文献   
993.
Three techniques of digital photogrammetry have been applied successfully to laboratory analogue models to study surface displacements caused by various volcano deformation types. Firstly, side-perspective videos are used to differentiate profile displacements between cryptodome intrusion models and models deforming by ductile inner-core viscous flow. Both models show similar morphologic features including a bulged flank and an asymmetric upper graben. However, differences in displacement trajectories of the bulge crest reflect upward intrusion push contrasting with essentially downward displacement vectors of weak core models. The other two techniques use vertical views correlated automatically either as time-sequence monoscopic views or as coeval stereoscopic pairs. This exploits to a maximum the method’s potential by imaging surface displacements over the whole model. Successive monoscopic photograms, because they suffer only moderate numerical processing for topographic effect removal, can detect very small displacements occurring early in deformation processes. As illustrated by analysis of intrusion models, the monoscopic method allows prediction of fault locations and main displacement locations. It can also anticipate the principal strain directions, and separate different deformation stages. On the other hand, the stereo-photogrammetry technique, although more complicated, provides topography and volume changes, as well as pictures of surface displacements in three dimensions. Results are presented for the spreading of volcano models on a ductile substratum and viscous cored cones. We have found digital photogrammetry to be a useful tool for analogue modelling, because it provides quantitative data on surface displacements, including movement invisible to the eye, as well as topographic changes. It is a good method for investigating and comparing different deformation mechanisms. It is especially useful for interpretation of displacement patterns obtained from monitoring of natural active volcanoes. In fact, results of the methods used in the laboratory can be directly compared with field data from geodetic or photogrammetric surveys, as at Mount St. Helens in 1980.  相似文献   
994.
We use a total of 839,369 PcP, PKPab, PKPbc, PKPdf, PKKPab, and PKKPbc residual travel times from [Bull. Seism. Soc. Am. 88 (1998) 722] grouped in 29,837 summary rays to constrain lateral variation in the depth to the core-mantle boundary (CMB). We assumed a homogeneous outer core, and the data were corrected for mantle structure and inner-core anisotropy. Inversions of separate data sets yield amplitude variations of up to 5 km for PcP, PKPab, PKPbc, and PKKP and 13 km for PKPdf. This is larger than the CMB undulations inferred in geodetic studies and, moreover, the PcP results are not readily consistent with the inferences from PKP and PKKP. Although the source-receiver ambiguity for the core-refracted phases can explain some of it, this discrepancy suggest that the travel-time residuals cannot be explained by topography alone. The wavespeed perturbations in the tomographic model used for the mantle corrections might be too small to fully account for the trade off between volumetric heterogeneity and CMB topography. In a second experiment we therefore re-applied corrections for mantle structure outside a basal 290 km-thick layer and inverted all data jointly for both CMB topography and volumetric heterogeneity within this layer. The resultant CMB model can explain PcP, PKP, and PKKP residuals and has approximately 0.2 km excess core ellipticity, which is in good agreement with inferences from free core nutation observations. Joint inversion yields a peak-to-peak amplitude of CMB topography of about 3 km, and the inversion yields velocity variations of ±5% in the basal layer. The latter suggests a strong trade-off between topography and volumetric heterogeneity, but uncertainty analyses suggest that the variation in core radius can be resolved. The spherical averages of all inverted topographic models suggest that the data are best fit if the actual CMB radius is 1.5 km less than in the Earth reference model used (i.e. the average outer core radius would be 3478 km).  相似文献   
995.
太湖沉积物微量元素特征和变化:自然与人类活动的影响   总被引:7,自引:1,他引:7  
通过对太湖沉积物微量元素的测定,分析了沉积物的元素含量特征及变化趋势,指出了重金属元素的分布特点。沉积物和岩石微量元素的上地壳标准化值显示,它们的曲线存在明显的区别,反映了物质在风化和沉积过程中不同的性质差异。重金属在太湖北部地区较高,在南部地区较低,特别是As、Hg、Cu、Zn、Ni。对照背景值,探讨了重金属元素的富集程度,并运用地累积指数评估了沉积物的污染程度。根据1987年和2000年的数据,计算了重金属的累积速率。最后,讨论了自然作用和人类活动对微量元素的影响。  相似文献   
996.
云南墨江金厂金矿床黄铁矿标型特征研究   总被引:9,自引:1,他引:9  
黄铁矿在云南墨江金厂金矿床中广泛出现于蛇纹岩、黄铁铬绢英岩、硅质岩和石英脉中。通过对与黄铁矿成因产状密切关联的热液演化阶段的划分、黄铁矿的晶形统计、黄铁矿的热电性研究、黄铁矿的电子探针分析、黄铁矿所赋存的含金岩矿石标本中金品位化学分析,确定了与成矿物质来源——金厂蛇纹岩化镁质超基性岩、硅质岩和可能隐伏的酸性侵入岩有关的系列成因标型。在对黄铁矿热电标型的均方差参数的自然对数值(lnMp)与金品位自然对数值(lnTg)的相关性研究基础上,提出当lnMp值接近4.1时,金的品位值接近二业开采标准。金厂金矿体与镍矿体尽管空间上分离,但近镍矿体与富金石英脉中黄铁矿的共生元素组成成分表明金、镍矿体中部分矿质具有同源同期的特征。此外,全厂组硅质岩和可能的隐伏岩体在成矿物源和热源方面的贡献不容忽视。  相似文献   
997.
During the nineteenth century the Wonderfontein Valley and Spruit were described as a 'natural jewel' by adventurers. The valley underlain by dolomitic aquifers contained copious volumes of water and partly overlies gold-mining excavations, which were under a threat of flooding. For safety and economic reasons, large-scale dewatering of some of the dolomitic aquifers was decided upon as a matter of policy. This led to the lowering of the water table, which accelerated the formation of sinkholes and dolines in geologically sensitive areas. The streambed along approximately the first 30 km of the Lower Wonderfontein Spruit is particularly vulnerable. The mining sector attempted to rehabilitate the affected parts of the streambed by filling the sinkholes with various materials. Unfortunately, many of the treated sinkholes were reactivated by storm flow.  相似文献   
998.
999.
Paleomagnetic data from lavas and dikes of the Unkar igneous suite (16 sites) and sedimentary rocks of the Nankoweap Formation (7 sites), Grand Canyon Supergroup (GCSG), Arizona, provide two primary paleomagnetic poles for Laurentia for the latest Middle Proterozoic (ca. 1090 Ma) at 32°N, 185°E (dp=6.8°, DM=9.3°) and early Late Proterozoic (ca. 850–900 Ma) at 10°S, 163°E (dp=3.5°, DM=7.0°). A new 40Ar/39Ar age determination from an Unkar dike gives an interpreted intrusion age of about 1090 Ma, similar to previously reported geochronologic data for the Cardenas Basalts and associated intrusions. The paleomagnetic data show no evidence of any younger, middle Late Proterozoic tectonothermal event such as has been revealed in previous geochronologic studies of the Unkar igneous suite. The pole position for the Unkar Group Cardenas Basalts and related intrusions is in good agreement with other ca. 1100 Ma paleomagnetic poles from the Keweenawan midcontinent rift deposits and other SW Laurentia diabase intrusions. The close agreement in age and position of the Unkar intrusion (UI) pole with poles derived from rift related rocks from elsewhere in Laurentia indicates that mafic magmatism was essentially synchronous and widespread throughout Laurentia at ca. 1100 Ma, suggesting a large-scale continental magmatic event. The pole position for the Nankoweap Formation, which plots south of the Unkar mafic rocks, is consistent with a younger age of deposition, at about 900 to 850 Ma, than had previously been proposed. Consequently, the inferred 200 Ma difference in age between the Cardenas Basalts and overlying Nankoweap Formation provides evidence for a third major unconformity within the Grand Canyon sequence.  相似文献   
1000.
Dehydration and melting reactions generate large volumes of fluid in the crust and upper mantle, and play an important role in subduction zone seismicity. The fluid pathway must evolve from isolated pockets in low porosity, low permeability rock, coalescing to interconnected permeable pathways to the surface. When fluid pressures generated from a dehydration or melting reaction are sufficient to induce hydrofracture, then hydrofracture significantly influences the porosity–permeability structure within the dehydrating/melting horizon. If a low fluid-pressure boundary is introduced to the dehydrating rock, then fluid will be driven from the rock along the evolved permeable network toward that boundary. The resulting pressure reduction can then accelerate the dehydration reaction and further drive the flow. The sudden introduction of a low fluid-pressure boundary may occur by the co-seismic (dilatant) rupturing of a pressure seal that connects different fluid pressure states. This mechanism is invoked to explain the observed post-seismic evolution of wave velocities (Vp/Vs) following the 1995 Antofagasta, Chile earthquake. We show experimental results and introduce a conceptual and numerical model that reflects this scenario. The model couples the mechanical and thermodynamic effects of fluid pressure with devolitization kinetics, and is quantitatively consistent with experimental studies of the dehydration of gypsum and serpentine. The experimental results show that dehydration is controlled by access to a free (drained) boundary. The model provides a mechanistic explanation for the experimental observations and has applications in understanding the role of transient transport networks on the large-scale behavior of dehydrating and melting systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号