首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   2篇
  国内免费   2篇
大气科学   1篇
地球物理   14篇
地质学   55篇
海洋学   3篇
天文学   1篇
综合类   1篇
自然地理   2篇
  2024年   1篇
  2022年   2篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2010年   5篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2006年   5篇
  2004年   4篇
  2003年   1篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1998年   4篇
  1997年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1990年   2篇
  1988年   1篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有77条查询结果,搜索用时 78 毫秒
21.
22.
The understanding of geotechnical characteristics of near-surface material is of fundamental interest in seismic microzonation. Shear wave velocity (Vs), one of the most important soil properties for soil response modeling, has been evaluated through seismic profiling using the multichannel analysis of surface waves in the city of Dehradun situated along the foothills of northwest Himalaya. Fifty sites in the city have been investigated with survey lines between 72 and 96 m in length. Multiple 1-D and interpolated 2-D profiles have been generated up to a depth of 30–40 m. The Vs were used in the SHAKE2000 software in combination with seismic input motion of the recent Chamoli earthquake to obtain site response and amplification spectra. The estimated Vs are higher in the northern part of the study area (i.e., 200–700 m/s from the surface to a depth of about 30 m) as compared to the south and southwestern parts of the city (i.e., 180–400 m/s for the same depth range). The response spectra suggest that spectral acceleration values for two-story structures are three to eight times higher than peak ground acceleration at bedrock. The analysis also suggests peak amplification at 3–4, 2–2.5, and 1–1.5 Hz in the northern, central, and south-southwestern parts of the city, respectively. The spatial distributions of Vs and spectral accelerations provide valuable information for the seismic microzonation in different parts of the urban area of Dehradun.  相似文献   
23.
Ductile shear zones are important in tectonic reconstructions as a source of information on the relative motion of large crustal blocks or plates in the geological past. Methods to interpret fabric in ductile shear zones were mostly developed for low grade rocks where overprinting relations are usually well preserved. However, high grade shear zones are common and dominate in many Precambrian terrains. High grade shear zones should be analysed in a different way from low grade zones. The plane on which shear sense markers should be observed, the vorticity profile plane, is more difficult to find than in low grade shear zones. The most reliable shear sense markers in high grade shear zones are shear bands, mineral fish, mantled porphyroclasts, sigmoids and asymmetric boudins.  相似文献   
24.
25.
Quantitative landslide risk assessment requires information about the temporal, spatial and intensity probability of hazardous processes both regarding their initiation as well as their run-out. This is followed by an estimation of the physical consequences inflicted by the hazard, preferentially quantified in monetary values. For that purpose, deterministic hazard modelling has to be coupled with information about the value of the elements at risk and their vulnerability. Dynamic run-out models for debris flows are able to determine physical outputs (extension, depths, velocities, impact pressures) and to determine the zones where the elements at risk can suffer an impact. These results can then be applied for vulnerability and risk calculations. Debris flow risk has been assessed in the area of Tresenda in the Valtellina Valley (Lombardy Region, northern Italy). Three quantitative hazard scenarios for different return periods were prepared using available rainfall and geotechnical data. The numerical model FLO-2D was applied for the simulation of the debris flow propagation. The modelled hazard scenarios were consequently overlaid with the elements at risk, represented as building footprints. The expected physical damage to the buildings was estimated using vulnerability functions based on flow depth and impact pressure. A qualitative correlation between physical vulnerability and human losses was also proposed. To assess the uncertainties inherent in the analysis, six risk curves were obtained based on the maximum, average and minimum values and direct economic losses to the buildings were estimated, in the range of 0.25–7.7 million €, depending on the hazard scenario and vulnerability curve used.  相似文献   
26.
Geomorphological information can be combined with decision-support tools to assess landslide hazard and risk. A heuristic model was applied to a rural municipality in eastern Cuba. The study is based on a terrain mapping units (TMU) map, generated at 1:50,000 scale by interpretation of aerial photos, satellite images and field data. Information describing 603 terrain units was collected in a database. Landslide areas were mapped in detail to classify the different failure types and parts. Three major landslide regions are recognized in the study area: coastal hills with rockfalls, shallow debris flows and old rotational rockslides denudational slopes in limestone, with very large deep-seated rockslides related to tectonic activity and the Sierra de Caujerí scarp, with large rockslides. The Caujerí scarp presents the highest hazard, with recent landslides and various signs of active processes. The different landforms and the causative factors for landslides were analyzed and used to develop the heuristic model. The model is based on weights assigned by expert judgment and organized in a number of components such as slope angle, internal relief, slope shape, geological formation, active faults, distance to drainage, distance to springs, geomorphological subunits and existing landslide zones. From these variables a hierarchical heuristic model was applied in which three levels of weights were designed for classes, variables, and criteria. The model combines all weights into a single hazard value for each pixel of the landslide hazard map. The hazard map was then divided by two scales, one with three classes for disaster managers and one with 10 detailed hazard classes for technical staff. The range of weight values and the number of existing landslides is registered for each class. The resulting increasing landslide density with higher hazard classes indicates that the output map is reliable. The landslide hazard map was used in combination with existing information on buildings and infrastructure to prepare a qualitative risk map. The complete lack of historical landslide information and geotechnical data precludes the development of quantitative deterministic or probabilistic models.  相似文献   
27.
正The Appalachian orogen in North America is currently considered to be a Paleozoic accretion-type orogenic belt,or a collage,formed by collision of many ancient blocks between Laurentian and Gondwanan margins (Williams,1979;Williams et al.,1988;van Staal et al.,2007).Recently,major progress has been made in understanding the characteristics and tectonic evolution of the outboard peri-Laurentian and peri-Gondwanan terranes of the Iapetus Ocean (van Staal et al.,2009,2012).  相似文献   
28.
New U-Pb age determinations confirm earlier interpretations that the strongly deformed and metamorphosed mafic and intermediate igneous rocks of the Pie de Palo Complex represent a Mesoproterozoic fragment of suprasubduction zone oceanic crust.

A gabbroic pegmatite, interpreted to have formed during arc rifting or subsequent back-arc spreading, yielded a U-Pb age of 1204 +5.3/–4.7 Ma. Highly tectonized ultramafic-mafic cumulates, occurring at the structural base of the Pie de Palo Complex and previously interpreted to represent remnants of a primitive arc phase, prior to rifting and back-arc spreading, could not be dated, but should be older than 1204 Ma if these inferences are correct. Tabular, sill-like bodies of leucogabbro/diorite and calc-alkaline tonalite/granodiorite sills yielded ages of 1174±43 and 1169 +8/–7 Ma respectively. They may represent a younger, more evolved arc phase established after arc rifting or a younger, tectonically unrelated Mesoproterozoic arc. SHRIMP-analysis of metamorphic zircon rims with low Th/U ratios in VVL 110 gave a 206Pb/238U age of 455±10 Ma, similar to lower intercept dates determined by discordia lines. Combined, these data indicate that the bulk of the amphibolite facies metamorphism present in the Pie de Palo Complex was generated during the Famatinian Orogeny.

Analysis of six single detrital zircon grains in a metasedimentary, quartzofeldspathic garnet-mica schist, tectonically interleaved with the igneous rocks of the Pie de Palo Complex, and tentatively correlated with the Difunta Correa metasedimentary sequence of other workers, yielded three age populations: 1150–1160 Ma; 1050–1080 Ma and 665 Ma, indicating that these sedimentary rocks were deposited during the late Neoproterozoic or Early Paleozoic. In addition, they confirm structural evidence that intercalation of rocks of the Pie de Palo Complex with isolated slivers of these sedimentary rocks is due to tectonic imbrications. These ages are also consistent with a Laurentian provenance, and earlier interpretations that these rocks once represented a sedimentary cover to the Pie de Palo Complex. The zircon population of 1050–1080 Ma could be derived from Grenville-age felsic plutons identified elsewhere in the Pie de Palo Complex by other workers. However, no evidence has been found in our samples for a Grenville-age orogenic event, invoked previously to explain accretion of the oceanic Pie de Palo Complex to Laurentia prior to the late Neoproterozoic/Early Cambrian rifting and drift of Cuyania.  相似文献   

29.
The Modelling Of Landslide Hazards Using Gis   总被引:11,自引:0,他引:11  
Slope instability hazard assessment is based on theanalysis of the terrain conditions at sites whereslope failures occurred in the past. For the analysisof the causative factors the application of geographicinformation systems (GIS) is an essential tool in thedata analysis and the subsequent hazard assessment.Three scale levels of hazard mapping are defined – adirect experience-driven mapping at reconnaissancelevel, a statistical approach to determine thecausative factors in a quantitative susceptibilitymapping, and a methodology at large scale making use ofdeterministic models.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号