首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   894篇
  免费   38篇
  国内免费   4篇
测绘学   13篇
大气科学   108篇
地球物理   223篇
地质学   314篇
海洋学   65篇
天文学   108篇
综合类   1篇
自然地理   104篇
  2023年   6篇
  2022年   7篇
  2021年   9篇
  2020年   16篇
  2019年   18篇
  2018年   17篇
  2017年   31篇
  2016年   56篇
  2015年   37篇
  2014年   45篇
  2013年   87篇
  2012年   34篇
  2011年   42篇
  2010年   40篇
  2009年   36篇
  2008年   33篇
  2007年   30篇
  2006年   18篇
  2005年   13篇
  2004年   13篇
  2003年   13篇
  2002年   29篇
  2001年   13篇
  2000年   14篇
  1999年   13篇
  1998年   15篇
  1997年   14篇
  1996年   10篇
  1995年   11篇
  1994年   8篇
  1993年   6篇
  1992年   9篇
  1991年   7篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1987年   6篇
  1985年   12篇
  1984年   12篇
  1983年   12篇
  1982年   12篇
  1981年   8篇
  1980年   17篇
  1979年   12篇
  1978年   15篇
  1977年   11篇
  1976年   8篇
  1975年   7篇
  1973年   7篇
  1969年   7篇
排序方式: 共有936条查询结果,搜索用时 78 毫秒
91.
92.
The energy range above 60 keV is important for the study of many open problems in high energy astrophysics such as the role of Inverse Compton with respect to synchrotron or thermal processes in GRBs, non thermal mechanisms in SNR, the study of the high energy cut-offs in AGN spectra, and the detection of nuclear and annihilation lines. Recently the development of high energy Laue lenses with broad energy bandpasses from 60 to 600keV have been proposed for a Hard X ray focusing Telescope (HAXTEL) in order to study the X-ray continuum of celestial sources. The required focal plane detector should have high detection efficiency over the entire operative range, a spatial resolution of about 1mm, an energy resolution of a few keV at 500keV and a sensitivity to linear polarization. We describe a possible configuration of the focal plane detector based on several CdTe/CZT pixelated layers stacked together to achieve the required detection efficiency at high energy. Each layer can operate both as a separate position sensitive detector and polarimeter or work with other layers to increase the overall photopeak efficiency. Each layer has a hexagonal shape in order to minimize the detector surface required to cover the lens field of view. The pixels would have the same geometry so as to provide the best coupling with the lens point spread function and to increase the symmetry for polarimetric studies.  相似文献   
93.
Comparison of Seismic Dispersion and Attenuation Models   总被引:2,自引:0,他引:2  
The frequency-dependent attenuation of seismic waves causes decreased resolution of seismic images with depth, and the difference in transmission losses induces amplitude variations with offset. Transmission losses may occur due to friction or fluid movement, or may result from scattering in thin-layer. Whatever the physical mechanism, they can often be conveniently described using an empirical formulation wherein the elastic moduli and propagation velocity are complex functions of frequency.We have compiled and compared algebraically and numerically eight different models involving complex velocity: the Kolsky-Futterman model, the power-law model, Kjartansson's model, Müller's model, Azimi's second and third model, the Cole-Cole model, and the standard linear-solid model.For two different parameter sets, the attenuation and phase velocity are computed in the seismic frequency band, and the plane-wave propagation of a Ricker wavelet for the other models is compared with that for the Kolsky-Futterman model. The first parameter set consists of parameters for each of the models calculated from expressions given in the appendix. These expressions make the different models behave similarly to the KF model. The second parameter set consists of model parameters that are numerically adapted to the KF model.By selecting proper parameters, all models, except the standard linear-solid model, show behavior similar to that of the Kolsky-Futterman model. The SLS model behaves differently from the other models as the frequency goes to zero or infinity. Broadband measurement data is needed to select a specific model for a given seismic experiment.  相似文献   
94.
We present a comparative analysis of 1400 data series of water chemistry (particularly nitrogen and phosphorus concentrations), phytoplankton biomass as chlorophylla (chla) concentrations, concentrations of suspended matter and Secchi depth transparency collected from the mid-1980s to the mid-1990s from 162 stations in 27 Danish fjords and coastal waters. The results demonstrate that Danish coastal waters were heavily eutrophied and had high particle concentrations and turbid waters. Median values were 5.1 μg chla 1−1, 10.0 mg DW 1−1 of suspended particles, and Secchi depth of 3.6 m. Chlorophyll concentration was strongly linked to the total-nitrogen concentration. The strength of this relationship increased from spring to summer as the concentration of total nitrogen declined. During summer, total nitrogen concentrations accounted for about 60% of the variability in chlorophyll concentrations among the different coastal systems. The relationship between chlorophyll and total phosphorus was more consistant over the year and correlations were much weaker than encountered for total nitrogen. Secchi depth could be predicted with good precision from measurements of chlorophyll and suspended matter. In a multiple stepwise regression model with In-transformed values the two variables accounted for most of the variability in water transparency for the different seasons and the period March–October as a whole (c. 80%). We were able to demonstrate a significant relationship between total nitrogen and Secchi depth, with important implications for management purposes.  相似文献   
95.
The plane-wave reflection and transmission coefficients at a plane interface between two anisotropic media constitute the elements of the elastic scattering matrix. For a 1-D anisotropic medium the eigenvector decomposition of the system matrix of the transformed elasto-dynamic equations is used to derive a general expression for the scattering matrix. Depending on the normalization of the eigenvectors, the expressions give scattering coefficients for amplitudes or for vertical energy flux.Computing the vertical slownesses and the corresponding polarizations, the eigenvector matrix and its inverse can be found. We give a simple formula for the inverse, regardless of the normalization of the eigenvectors. When the eigenvectors are normalized with respect to amplitudes of displacement (or velocity), the calculation of the scattering matrix for amplitudes is simplified.When the relative changes in all parameters are small, a weak-contrast approximation of the scattering matrix, based on the exactly determined polarization vectors in an average medium, is obtained. The same approximation is also derived directly from the transformed elasto-dynamic equations for a smooth vertically inhomogeneous medium, proving the consistency of the approximation.For monoclinic media, with the mirror symmetry plane parallel to the interface, the approximative scattering matrix is given in terms of analytic expressions for the non-normalized eigenvectors and vertical slownesses. For transversely isotropic media with a vertical axis of symmetry (VTI) and isotropic media, explicit solutions for the weak-contrast approximations of the scattering matrices have been obtained. The scattering matrix for amplitudes for isotropic media is well known. The scattering matrix for vertical energy flux may have applications in AVO analysis and inversion due to the reciprocity of the reflection coefficients for converted waves.Numerical examples for monoclinic and VTI media provide good agreement between the approximative and the exact reflection matrices. It is, however, expected that the approximations cannot be used when the symmetry properties of the two media are very different. This is because the approximation relies on a small relative contrast between the eigenvectors in the two media.Presented at the Workshop Meeting on Seismic Waves in Laterally Inhomogeneous Media, Castle of Trest, Czech Republic, May 22–27, 1995.  相似文献   
96.
97.
 Most natural feldspars contain many charged impurities, and display a range of bond angles, distributed about the ideal. These effects can lead to complications in the structure of the conduction band, giving rise to a tail of energy states (below the high-mobility conduction band) through which electrons can travel, but with reduced mobility: transport through these states is expected to be thermally activated. The purpose of this article is twofold. Firstly, we consider what kind of lattice perturbations could give rise to both localized and extended conduction band-tail states. Secondly, we consider what influence the band tails have on the luminescence properties of feldspar, where electrons travel through the sample prior to recombination. The work highlights the dominant role that 0.04–0.05-eV phonons play in both the luminescence excitation and emission processes of these materials. It also has relevance in the dating of feldspar sediments at elevated temperatures. Received: 11 May 2001 / Accepted: 6 September 2001  相似文献   
98.
Egg production of Calanus finmarchicus was studied during joint basin-scale surveys in April–June 2003 in the Norwegian Sea. Surveys covered the whole Norwegian Sea and were conducted from Norwegian, Icelandic and Faroese research vessels. Stations were classified as being in pre-bloom, bloom or post-bloom phase according to levels of chlorophyll a and nitrate. Individual egg production rates and population egg production rates were calculated and compared between areas. Both individual egg production rates (eggs female−1 day−1) and population egg production rates (eggs m−2 day−1) were significantly higher in bloom areas compared with pre-bloom and post-bloom areas. However, when integrated over an estimated duration of the three phases, the time-integrated egg production (eggs m−2) in most years was highest in the pre-bloom phase, and this was explained by the longer duration of this phase compared with the two other phases.  相似文献   
99.
Basin modelling studies are carried out in order to understand the basin evolution and palaeotemperature history of sedimentary basins. The results of basin modelling are sensitive to changes in the physical properties of the rocks in the sedimentary sequences. The rate of basin subsidence depends, to a large extent, on the density of the sedimentary column, which is largely dependent on the porosity and therefore on the rate of compaction. This study has tested the sensitivity of varying porosity/depth curves and related thermal conductivities for the Cenozoic succession along a cross‐section in the northern North Sea basin, offshore Norway. End‐member porosity/depth curves, assuming clay with smectite and kaolinite properties, are compared with a standard compaction curve for shale normally applied to the North Sea. Using these alternate relationships, basin geometries of the Cenozoic succession may vary up to 15% from those predicted using the standard compaction curve. Isostatic subsidence along the cross‐section varies 2.3–4.6% between the two end‐member cases. This leads to a 3–8% difference in tectonic subsidence, with maximum values in the basin centre. Owing to this, the estimated stretching factors vary up to 7.8%, which further gives rise to a maximum difference in heat flow of more than 8.5% in the basin centre. The modelled temperatures for an Upper Jurassic source rock show a deviation of more than 20 °C at present dependent on the thermal conductivity properties in the post‐rift succession. This will influence the modelled hydrocarbon generation history of the basin, which is an essential output from basin modelling analysis. Results from the northern North Sea have shown that varying compaction trends in sediments with varying thermal properties are important parameters to constrain when analysing sedimentary basins.  相似文献   
100.
Clays and clay‐bearing rocks like shale are extremely water sensitive. This is partly due to the interaction between water and mineral surfaces, strengthened by the presence of nanometer‐size pores and related large specific surface areas. Molecular‐scale numerical simulations, using a discrete‐element model, show that shear rigidity can be associated with structurally ordered (bound or adsorbed) water near charged surfaces. Building on these and other molecular dynamics simulations plus nanoscale experiments from the literature, the water monolayer adjacent to hydrophilic solid surfaces appears to be characterised by shear stiffness and/or enhanced viscosity. In both cases, elastic wave propagation will be affected by the bound or adsorbed water. Using a simple rock physics model, bound water properties were adjusted to match laboratory measured P‐ and S‐wave velocities on pure water‐saturated kaolinite and smectite. To fit the measured stress sensitivity, particularly for kaolinite, the contribution from solid‐grain contact stiffness needs to be added. The model predicts, particularly for S‐waves, that viscoelastic bound water could be a source of dispersion in clay and clay‐rich rocks. The bound‐water‐based rock physics model is found to represent a lower bound to laboratory‐measured velocities obtained with shales of different mineralogy and porosity levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号