Brines in Cambrian sandstones and Ordovician dolostones of the St-Lawrence Lowlands at Bécancour, Québec, Canada were sampled for analysis of all stable noble gases in order to trace their origin and migration path, in addition to quantifying their residence time. Major ion chemistry indicates that the brines are of Na-Ca-Cl type, possibly derived from halite dissolution. 87Sr/86Sr ratios and Ca excess indicate prolonged interactions with silicate rocks of the Proterozoic Grenville basement or the Cambrian Potsdam sandstone. The brines constrain a 2-3% contribution of mantle 3He and large amounts of nucleogenic 21Ne∗ and 38Ar∗ and radiogenic 4He and 40Ar∗. 4He/40Ar∗ and 21Ne∗/40Ar∗ ratios, corrected for mass fractionation during incomplete brine degassing, are identical to their production ratios in rocks. The source of salinity (halite dissolution), plus the occurrence of large amounts of 40Ar∗ in brines constrain the residence time of Bécancour brines as being older than the Cretaceous. Evaporites in the St-Lawrence Lowlands likely existed only during Devonian-Silurian time. Brines might result from infiltration of Devonian water leaching halite, penetrating into or below the deeper Cambrian-Ordovician aquifers. During the Devonian, the basin reached temperatures higher than 250 °C, allowing for thermal maturation of local gas-prone source rocks (Utica shales) and possibly facilitating the release of radiogenic 40Ar∗ into the brines. The last thermal event that could have facilitated the liberation of 40Ar∗ into fluids and contributed to mantle 3He is the Cretaceous Monteregian Hills magmatic episode. For residence times younger than the Cretaceous, it is difficult to find an appropriate source of salinity and of nucleogenic/radiogenic gases to the Bécancour brines. 相似文献
Matrix-diffusion parameters deduced from an infiltration tracer test at Idaho National Laboratory (INL), USA, are combined with other site information in an analysis involving two dimensionless lumped parameters to assess the effects of matrix diffusion on contaminant transport at the INL over longer distance and time scales than were evaluated in the test. Matrix diffusion was interrogated in the test by comparing, in three different observation wells, the breakthrough curves of two simultaneously injected nonsorbing solutes that have different diffusion coefficients. The matrix-diffusion parameters deduced from the different breakthrough curves were in good agreement, suggesting that the parameters may be broadly applicable at the INL. With this in mind, the uncertainties in the individual parameters that make up the two lumped parameters were estimated, and the resulting ranges of parameter values were used to assess matrix diffusion over larger scales. Assessments of the effects of flow transients, spatial heterogeneity in transport parameters, and sorption on solute transport in the shallow subsurface flow system were also conducted. The methods presented here should be generally applicable to other settings for making bounding assessments of the effects of matrix diffusion while honoring the information obtained from tracer tests and other supporting data. 相似文献
We explore the causes and predictability of extreme low minimum temperatures (Tmin) that occurred across northern and eastern Australia in September 2019. Historically, reduced Tmin is related to the occurrence of a positive Indian Ocean Dipole (IOD) and central Pacific El Niño. Positive IOD events tend to locate an anomalous anticyclone over the Great Australian Bight, therefore inducing cold advection across eastern Australia. Positive IOD and central Pacific El Niño also reduce cloud cover over northern and eastern Australia, thus enhancing radiative cooling at night-time. During September 2019, the IOD and central Pacific El Niño were strongly positive, and so the observed Tmin anomalies are well reconstructed based on their historical relationships with the IOD and central Pacific El Niño. This implies that September 2019 Tmin anomalies should have been predictable at least 1–2 months in advance. However, even at zero lead time the Bureau of Metereorolgy ACCESS-S1 seasonal prediction model failed to predict the anomalous anticyclone in the Bight and the cold anomalies in the east. Analysis of hindcasts for 1990–2012 indicates that the model's teleconnections from the IOD are systematically weaker than the observed, which likely stems from mean state biases in sea surface temperature and rainfall in the tropical Indian and western Pacific Oceans. Together with this weak IOD teleconnection, forecasts for earlier-than-observed onset of the negative Southern Annular Mode following the strong polar stratospheric warming that occurred in late August 2019 may have contributed to the Tmin forecast bust over Australia for September 2019.
We investigate the possibility of measuring the heights and morphology of viscously emplaced domes using radar imagery. We accurately reproduce the known height and shape of a terrestrial salt dome, and estimate the heights of several venusian pancake domes to within a factor of two. The terrestrial salt dome is consistent with a Bingham flow, while the much larger venusian pancake domes are consistent with a Newtonian flow. Applying the same techniques to Ganesa Macula, a potential cryovolcanic dome on Titan, we estimate a height between 2.0-4.9 km. Additional factors such as variable roughness and composition might account for some of the discrepancies observed. 相似文献
We present results and interpretation of a 72 km long deep seismic reflection profile acquired across the internal zone of the Hercynian belt of South Brittany. The profile is of excellent quality, most of the crust being highly reflective. The “ARMOR 2 South” profile, is correlated with the “ARMOR 2 North” profile that was published in 2003. Correlation of the main subsurface reflections with surface geological and structural data provides important information about the crustal structure that resulted from thickening during Late Devonian and regional-scale extension during Late Carboniferous. In particular, seismics image shows a very high reflectivity zone, lying flat over more than 40 km at about 10–12 km depth. This zone is interpreted as a major zone of ductile crustal thinning. 相似文献
The end-Permian mass extinction devastated most marine communities and the recovery was a protracted event lasting several million years into the Early Triassic. Environmental and biological processes undoubtedly controlled patterns of recovery for marine invertebrates in the aftermath of the extinction, but are often difficult to single-out. The global diversity and distribution of marine lophophorates during the aftermath of the end-Permian mass extinction indicates that stenolaemate bryozoans, rhynchonelliform brachiopods, and lingulid brachiopods displayed distinct recovery patterns.Bryozoans were the most susceptible of the lophophorates, experiencing relatively high rates of extinction at the end of the Permian, and becoming restricted to the Boreal region during the Early Triassic. The recovery of bryozoans was also delayed until the Late Triassic and characterized by very low diversity and abundance. Following the final disappearance of Permian rhynchonelliform brachiopod survivors, Early Triassic rhynchonelliform brachiopod abundance remained suppressed despite a successful re-diversification and a global distribution, suggesting a decoupling between global taxonomic and ecological processes likely driven by lingering environmental stress.In contrast with bryozoans and rhynchonelliforms, lingulid brachiopods rebounded rapidly, colonizing shallow marine settings left vacant by the extinction. Lingulid dominance, characterized by low diversity but high numerical abundance, was short-lived and they were once again displaced back into marginal settings as environmental stress changed through the marine recovery. The presence in lingulid brachiopods of the respiratory pigment hemerythrin, known to increase the efficacy of oxygen storage and transport, when coupled with other morphological and physiological adaptations, may have given lingulids a survival advantage in environmentally stressed Early Triassic settings. 相似文献
This paper investigates the stable isotopic composition from late Pleistocene–Holocene (~ 13 to ~ 10.5 cal ka BP) shells of the land snail Helix figulina, from Franchthi Cave (Greece). It explores the palaeoclimatic and palaeoenvironmental implications of the isotope palaeoecology of archaeological shells at the time of human occupation of the cave. Modern shells from around the cave were also analysed and their isotopic signatures compared with those of the archaeological shells. The carbon isotope composition of modern shells depicts the consumption of C3 vegetation. Shell oxygen isotopic values are consistent with other Mediterranean snail shells from coastal areas. Combining empirical linear regression and an evaporative model, the δ18Os suggest that modern snails in the study area are active during periods of higher relative humidity and lower rainfall δ18O, probably at night. Late glacial and early Holocene δ18Os show lower values compared to modern ones. Early Holocene δ18Os values likely track enhanced moisture and isotopic changes in the precipitation source. By contrast, lower late glacial δ18O could reflect lower temperatures and δ18Op, compared to the present day. Shell carbon isotope values indicate the presence of C3 vegetation as main source of carbon to late glacial and early Holocene snails. 相似文献
Since the advent of Global Navigation Satellite Systems, it has been possible to perform hydrographic survey reductions through the ellipsoid, which has the potential to simplify operations and improve bathymetric products. This technique requires a spatially continuous separation surface connecting chart datum (CD) to a geodetic ellipsoid. The Canadian Hydrographic Service (CHS), with support from the Canadian Geodetic Survey, has developed a new suite of such surfaces, termed Hydrographic Vertical Separations Surfaces, or HyVSEPs, for CD and seven tidal levels. They capture the spatial variability of the tidal datum and levels between tide gauges and offshore using semiempirical models coupling observations at tide stations with relative sea-level rise estimates, dynamic ocean model solutions, satellite altimetry, and a geoid model. HyVSEPs are available for all tidal waters of Canada, covering over seven million square kilometers of ocean and more than 200,000 kilometers of shoreline. This document provides an overview of the CHS's modeling approach, tools, methods, and procedures.
The HyVSEP for CD defines the new hydrographic datum for the tidal waters of Canada. HyVSEPs for other tidal levels are fundamental for coastal studies, climate change adaptation and the definition of the Canadian shoreline and offshore boundaries. HyVSEPs for inland waters are not discussed. 相似文献
In a survey in Greece from 1987 to 2000 hepatotoxic cyanobacterial blooms were observed in 9 out of 33 freshwaters. Microcystins (MCYSTs) were detected by HPLC in 7 of these lakes, and the total MCYST concentration per scum dry weight ranged from 50.3 to 1638 ± 464 μg g—1. Cyanobacterial genera (Microcystis, Anabaena, Anabaenopsis, Aphanizomenon, Cylindrospermopsis) with known toxin producing taxa were present in 31 freshwaters. From our data and a review of the literature, it would appear that Mediterranean countries are more likely 1) to have toxic cyanobacterial blooms consisting of Microcystis spp. and 2) to have higher intracellular MCYST concentrations. A case study in Lake Kastoria is used to highlight seasonal patterns of cyanobacterial and MCYST‐LR occurrence and to assess cyanotoxin risk. Cyanobacterial biovolume was high (> 11 μL L—1) throughout the year and was in excess of Guidance Level 2 (10 μL L—1) proposed by WHO for recreational waters and Alert Level 2 for drinking water. Further, surface water samples from April to November exceeded Guidance Level 3, with the potential for acute cyanobacterial poisoning. Intracellular MCYST‐LR concentrations (max 3186 μg L—1) exceeded the WHO guideline for drinking water (1 μg L—1) from September to November with a high risk of adverse health effects. Preliminary evidence indicates that in 3 lakes microcystins are accumulated in some aquatic organisms. Generally, a high risk level can be deduced from the data for the Mediterranean region. 相似文献