首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   5篇
测绘学   6篇
大气科学   7篇
地球物理   28篇
地质学   37篇
海洋学   28篇
天文学   23篇
自然地理   12篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2017年   1篇
  2015年   2篇
  2014年   7篇
  2013年   20篇
  2012年   7篇
  2011年   5篇
  2010年   9篇
  2009年   8篇
  2008年   2篇
  2007年   10篇
  2006年   5篇
  2005年   1篇
  2004年   7篇
  2003年   7篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   6篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1984年   2篇
  1982年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有141条查询结果,搜索用时 593 毫秒
131.
Changes in environmental conditions can be accompanied by shifts in the distribution and abundances of organisms. When physical factors become unsuitable for growth ofZostera marina (eelgrass), which is a dominant seagrass species in North America, other more ruderal seagrass species, includingRuppia maritima (widgeongrass), often increase in abundance or replace the dominant species. We report the proliferation of widgeongrass into eelgrass beds in Mission Bay and San Diego Bay in San Diego, California, during the 1997 to 1998 El Niño Southern Oscillation (ENSO). Widgeongrass persisted in these eelgrass beds at least one year after a return to non-ENSO conditions and an increase in eelgrass density. We suggest that a warming of the water in two bays in San Diego by 1.5–2.5°C could result, in a permanent shift in the local seagrass vegetation from eelgrass to widgeongrass. This shift, could, have substantial ecosystem-level ramifications.  相似文献   
132.
To interpret the degassing of F-bearing felsic magmas, the solubilities of H2O, NaCl, and KCl in topaz rhyolite liquids have been investigated experimentally at 2000, 500, and ≈1 bar and 700° to 975 °C. Chloride solubility in these liquids increases with decreasing H2O activity, increasing pressure, increasing F content of the liquid from 0.2 to 1.2 wt% F, and increasing the molar ratio of ((Al + Na + Ca + Mg)/Si). Small quantities of Cl exert a strong influence on the exsolution of magmatic volatile phases (MVPs) from F-bearing topaz rhyolite melts at shallow crustal pressures. Water- and chloride-bearing volatile phases, such as vapor, brine, or fluid, exsolve from F-enriched silicate liquids containing as little as 1 wt% H2O and 0.2 to 0.6 wt% Cl at 2000 bar compared with 5 to 6 wt% H2O required for volatile phase exsolution in chloride-free liquids. The maximum solubility of Cl in H2O-poor silicate liquids at 500 and 2000 bar is not related to the maximum solubility of H2O in chloride-poor liquids by simple linear and negative relationships; there are strong positive deviations from ideality in the activities of each volatile in both the silicate liquid and the MVP(s). Plots of H2O versus Cl in rhyolite liquids, for experiments conducted at 500 bar and 910°–930 °C, show a distinct 90° break-in-slope pattern that is indicative of coexisting vapor and brine under closed-system conditions. The presence of two MVPs buffers the H2O and Cl concentrations of the silicate liquids. Comparison of these experimentally-determined volatile solubilities with the pre-eruptive H2O and Cl concentrations of five North American topaz and tin rhyolite melts, determined from melt inclusion compositions, provides evidence for the exsolution of MVPs from felsic magmas. One of these, the Cerro el Lobo magma, appears to have exsolved alkali chloride-bearing vapor plus brine or a single supercritical fluid phase prior to entrapment of the melt inclusions and prior to eruption. Received: 6 November 1995 / Accepted: 29 January 1998  相似文献   
133.
A comparative study of the standing crop of marsh vegetation was made of the Patuxent River and Parker Creek, two tributaries of Chesapeake Bay. The biomass of marsh vegetation in the tidal freshwater and brackish regions of the Patuxent was relatively uniform with regard to salinity, seasonally high concentrations of dissolved nitrogen, and phosphorus and nutrient gradient. Maximum values of biomass occurred in the tidal freshwater and slightly brackish water region of Parker Creek, a system whose nutrient concentrations approximated 20% of those of Patuxent River. Biomass values for the Patuxent River and Parker Creek averaged about 1417 and 895 g m?2 dry weight, respectively. Estimates of total annual marsh production based on the maximum standing crop was 27×103 and 519 metric tons, respectively, for the Patuxent River and Parker Creek.  相似文献   
134.
A 12 m sediment core recovered from the south basin of Lake Turkana, northwestern Kenya, reveals four major diatom assemblages that span approximately 5450 to 1070 years BP based on AMS radiocarbon analyses. The oldest assemblage, Zone D (5450 to 4850 yr BP), is dominated by Melosira nyassensis and Stephanodiscus spp. and is interpreted to reflect higher lake levels, fresher water and more variable seasonal mixing of the water column than the modern lake. Melosira dominates the assemblage in Zone C (4850 to 3900 yr BP) with some Surirella engleri and Stephanodiscus. This assemblage indicates a continuation of relatively high lake levels and seasonal mixing of a stratified lake. The brief peak of Surirella, interpreted as benthic, suggests an episode of slightly lower lake level. Thalassiosira rudolfi and Surirella predominate since the beginning of Zone B (3900 to 1900 yr BP), reflecting a decrease in lake level and increase in water column salinity. Increasing dominance of Surirella in Zone A (1900 to 1070 yr BP) may suggest that the lake continued to decrease in depth. Salinity probably rose to levels comparable with the modern lake. These results are consistent with paleoclimatic interpretations based on carbonate abundance, lamination thickness, oxygen isotope and bulk geochemistry profiles from this core and cores recovered from the north basin. It extends the known paleolimnology beyond 4000 yr BP of the earlier research to 5450 yr BP and into the early to mid Holocene pluvial phase in northern intertropical east Africa.  相似文献   
135.
We present a treatment of libration-point capture in the restricted three-body problem. Examples of capture are given, and a long-term numerical integration is presented, to illustrate major features of orbits arising from capture. A theory of lifetimes is given, providing order-of-magnitude (though rather conservative) estimates of the time a body remains captured. A general capture criterion, giving bounds on admissible values of the postcapture semimajor axis, for given values of eccentricity and inclination. This criterion is used to demonstrate that, in general, direct postcapture orbits lie outside retrograde ones. We also emphasize the importance of mass-change, of one or both primaries, in producing capture. This phenomenon is shown to give rise to a new type of capture, “pull-down capture,” which produces retrograde orbits. The effects of nebular drag also are noted.These results suggest the improbability of a capture origin for Jupiter's outer satellites within the last 4+ billion years, or since the solar system reached its present dynamical configuration. Computations indicate, however, that either mass-change or nebular drag could have been effective in producing capture. The outer satellite groups are shown to resemble Hirayama families physically, thus supporting a hypothesis of capture followed by collisional fragmentation.  相似文献   
136.
A high-resolution sediment core (sedimentation rate ~2 mm/year) from the German Bight was analysed for its foraminiferal stable oxygen isotope (18O) composition. These data were correlated with instrumental summer sea-surface temperature and salinity data from the nearby island of Helgoland, reaching back 100 years. Comparing the isotope data with the instrumental records reveals a distinct 18O–salinity relationship (18O=0.34×S–9.36; r=0.86) for the German Bight, where salinity is mainly driven by freshwater input from the Elbe River. Thus, these findings provide the possibility for future regional paleosalinity and paleodischarge reconstructions for times far beyond the instrumental timescale.  相似文献   
137.
138.
Ground water discharge and nitrate flux to the Gulf of Mexico   总被引:3,自引:0,他引:3  
Ground water samples (37 to 186 m depth) from Baldwin County, Alabama, are used to define the hydrogeology of Gulf coastal aquifers and calculate the subsurface discharge of nutrients to the Gulf of Mexico. The ground water flow and nitrate flux have been determined by linking ground water concentrations to 3H/3He and 4He age dates. The middle aquifer (A2) is an active flow system characterized by postnuclear tritium levels, moderate vertical velocities, and high nitrate concentrations. Ground water discharge could be an unaccounted source for nutrients in the coastal oceans. The aquifers annually discharge 1.1 +/- 0.01 x 10(8) moles of nitrate to the Gulf of Mexico, or 50% and 0.8% of the annual contributions from the Mobile-Alabama River System and the Mississippi River System, respectively. In southern Baldwin County, south of Loxley, increasing reliance on ground water in the deeper A3 aquifer requires accurate estimates of safe ground water withdrawal. This aquifer, partially confined by Pliocene clay above and Pensacola Clay below, is tritium dead and contains elevated 4He concentrations with no nitrate and estimated ground water ages from 100 to 7000 years. The isotopic composition and concentration of natural gas diffusing from the Pensacola Clay into the A3 aquifer aids in defining the deep ground water discharge. The highest 4He and CH4 concentrations are found only in the deepest sample (Gulf State Park), indicating that ground water flow into the Gulf of Mexico suppresses the natural gas plume. Using the shape of the CH4-He plume and the accumulation of 4He rate (2.2 +/- 0.8 microcc/kg/1000 years), we estimate the natural submarine discharge and the replenishment rate for the A3 aquifer.  相似文献   
139.
An evaluation was made of the degree of coalification of two coal balls from the Illinois Basin of the Pennsylvanian (upper Carboniferous) of the United States. Previous interpretations are mainly misleading and contradictory, primarily because of the assumption that the brown color and exceptional cellular and subcellular preservation typical of American coal balls imply chemical preservation of cellulose and lignin, the primary components of peat. Xylem tissue from a medullosan seed fern contained in a coal ball and the coal attached to the coal ball from the Calhoun coal bed, Mattoon Formation, Illinois, was analyzed by elemental, petrographic, and nuclear magnetic resonance (NMR) techniques to determine the degree of coalification. The NMR and elemental data indicate the lack of cellulose and lignin and a probable rank of high-volatile C bituminous coal. These data corroborate data for a coal ball from the Herrin (No. 6) coal bed (Carbondale Formation, Middle Pennsylvanian) and support our hypothesis that the organic matter in coal balls of the Pennsylvanian strata of the United States is coalified to about the same degree as the surrounding coal. Data presented show a range of lower reflectances for xylem tissue and vitrinite in the analyzed coal balls compared with vitrinite in the attached coal.The data reported indicate that physical preservation of organic matter in coal balls does not imply chemical preservation. Also our study supports the hypothesis that compactional (static load) pressure is not a prerequisite for coalification up to a rank of high-volatile C bituminous coal.A whole-rock analysis of the Calhoun coal ball indicates a similarity to other carbonate coal balls from the United States. It consists primarily of calcium carbonate and 1–2% organic matter; silica and alumina together make up less than 0.5%, indicating the lack of minerals such as quartz and clays.  相似文献   
140.
Rodlets, occurring in shale and coal (uppermost Berriasian to middle Aptian, Lower Cretaceous), were identified from drill cuttings taken from depths between 9330 ft (2844 m) and 11, 460 ft (3493 m) in the Texaco et al., Federal Block 598, No. 2 well, in the Baltimore Canyon Trough. Under the binocular microscope, most of the rodlets appear black, but a few are reddish brown, or brownish and translucent on thin edges. They range in diameter from about 0.4 to 1.7 mm and are commonly flattened. The rodlets break with a conchoidal fracture, and some show an apparent cellular cast on their longitudinal surfaces. When polished and viewed in reflected light, the rodlets appear dark gray and have an average random reflectance of less than 0.1% whereas mean maximum reflectances are 0.48–0.55% for vitrinite in the associated shale and coal. These vitrinite reflectances indicate either subbituminous A or high-volatile C bituminous coal. The rodlets fluoresce dull gray yellow to dull yellow. The scanning electron microscope (SEM) and light microscope reveal the presence of swirl-like features in the rodlet interiors. Minerals associated with the rodlets occur as sand-size grains attached to the outer surface, as finely disseminated interior grains, and as fracture fillings. Electron microprobe and SEM-energy-dispersive X-ray (EDX) anlayses indicate that the minerals are dominantly clays (probably illite and chlorite) and iron disulfide; calcium carbonate, silicon dioxide, potassium aluminum silicate (feldspar), titanium dioxide, zinc sulfide, and iron sulfate minerals have been also identified. The rodlets were analyzed directly for C, H, N, O, and total S and are interpreted as true resins on the basis of C and H contents that range from 75.6 to 80.3 and from 7.4 to 8.7 wt. % (dry, ash-free basis), respectively. Elemental and infrared data support a composition similar to that of resinite from bituminous coal. Elements determined to be organically associated in the rodlets include S (0.2–0.5 wt.%), Cl (0.03–0.1 wt.%), and Si (0.05–0.08 wt.%). The ash content of the resin rodlets ranges from 4 to 24 wt.% and averages 12 wt.%. Total sulfur contents range from 1.7 to 3.6 wt.%. Resins of fossil plants are known to have little or no sulfur and ash; therefore, these data and the presence of minerals in fractures indicate that most of the sulfur and mineral matter were introduced into the resin partly or wholly after the time of brittle fracture of the resin. The probable source of the resin rodlets is fossil pinaceous conifer cones, which are known to have resin canals as much as 2400 μm in diameter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号