首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   10篇
  国内免费   3篇
测绘学   2篇
大气科学   13篇
地球物理   50篇
地质学   67篇
海洋学   10篇
天文学   7篇
自然地理   12篇
  2022年   1篇
  2021年   13篇
  2020年   6篇
  2019年   5篇
  2018年   10篇
  2017年   9篇
  2016年   7篇
  2015年   8篇
  2014年   8篇
  2013年   10篇
  2012年   7篇
  2011年   16篇
  2010年   3篇
  2009年   10篇
  2008年   10篇
  2007年   6篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1965年   1篇
排序方式: 共有161条查询结果,搜索用时 15 毫秒
81.
Longitudinal heterogeneity in reservoirs is especially related to increase in sedimentation and water transparency along the river/dam axis. Consequently, primary production tends to reach higher values in intermediate regions where there is a balance between the availability of the main resources (light and nutrients) suitable for phytoplankton growth. Many factors such as reservoir morphometry, retention time, thermal stratification and geographical location can affect the boundaries between these regions. The tropical Funil Reservoir (Brazil), despite a low retention time, has experienced severe eutrophication in recent decades, with persistent cyanobacteria blooms. During the course of 1 year, samples were collected at four stations along the reservoir (fluvial, intermediate and lentic compartments) to evaluate if spatial heterogeneity could affect the occurrence and distribution of these blooms along the reservoir. Although the reservoir has a short annual retention time (mean 41.5 days), the typical zonation pattern was observed for the main abiotic variables and phytoplankton abundance. However, higher biomass occurred in the lentic compartment rather than in the intermediate zone. Despite the peculiar heterogeneity in total biomass, the phytoplankton composition and seasonal variability were very similar along the entire reservoir, with a few marked differences only in the fluvial zone. Phytoplankton total biomass in Funil Reservoir was high, even in periods of lower seasonal retention time (around 15 days), and was especially related to high input of nutrients. Moreover, retention time directly affects the spatial heterogeneity of phytoplankton biomass, since strong variability was only observed during the cold-dry season, corresponding to periods of longer retention time (around 80 days). While high availability of nutrients promoted high cyanobacterial biomass in the entire system, the few periods of heterogeneous spatiality seemed to be related to changes in retention time.  相似文献   
82.

Tsunamic events are a frequent hazard to coastal towns. Despite this, the extent to which resilience models can be applied to coastal towns as well as the aspects that should be considered when doing so have not been fully evaluated. There is little information regarding the specific indicators that allow cities to better cope and adapt to the impacts of tsunamis, and this information is especially scarce for developing countries such as Chile. The main objective of this study is to develop a resilience model to explore the extent to which local characteristics influence the resilience of Chilean coastal communities to tsunami hazards. Accordingly, this study presents the Coastal Community Resilience model (The CORE model) for exploring the adaptive capacity of coastal areas affected by tsunamis. This model was then applied to fourteen coastal villages, distributed within four towns, three communes, and two regions of Chile. Data comprising 21 indicators that address the physical, environmental, and social resilience aspects of the villages were obtained on-site and from governmental and municipality databases; these data were then subjected to multivariate analysis in order to determine which indicators most and least affect resilience and whether indicators affect resilience positively or negatively. Variation in resilience among the villages was explained by similarities and differences in the administrative-political, urban, rural, and indigenous characteristics of the study areas. In addition to these results, we discuss land use planning considerations to build community resilience, and we provide insight into the utility of the resilience model proposed here. Overall, our findings shed light on gaps in planning policies and opportunities for planning coastal resilient communities, particularly for those where data of explicit indicators are scarce like in Chile and other developing countries.

  相似文献   
83.
Site formation processes at the Late Pleistocene rockshelter deposit of Obi‐Rakhmat were reconstructed through soil micromorphology and Fourier transform infrared spectroscopy (FTIR). The entire sequence has undergone limited diagenesis and is well preserved. The base of the stratified sequence represents a karstic setting with intermittent, low‐energy deposition of autochthonous gravitational debris and anthropogenic material in a wet, muddy environment. These sediments were post‐depositionally affected by episodic waterlogging. The bulk of the sequence overlying the karstic layers comprises a continuous series of primary freshwater spring deposits containing reworked anthropogenic material that was buried penecontemporaneously with calcium carbonate deposition. The top of the sequence is weakly cryoturbated, indicating a periodically cold, wet environment. No alluvial elements that could suggest sediment inputs from the nearby river terraces were documented. A single exogenous layer was identified, representing an episode of colluviation from directly above the rockshelter preceding a major roofspall event. The basal part of the sequence contains slightly reworked anthropogenic remnants of intense activities, including combustion. The anthropogenic elements present in the spring deposits show higher degrees of reworking, suggesting within‐layer translocation. The development of spring activity at the site did not cause humans to abandon the rockshelter; they continued to carry out their activities throughout a changing local environment. © 2009 Wiley Periodicals, Inc.  相似文献   
84.
85.
In the present study, the question of inelastic p–Δ effects is examined from the perspective of inelastic spectral ordinates. Inelastic acceleration response spectra are generated using a model which includes the effects of gravity; for each spectrum the ductility factor and the gravity load level (characterized by the stability coefficient) are held constant. Amplification spectra are generated by taking the ratio between spectra with and without gravity effects. The results are analysed statistically and a formula for the amplification factor as a function of the relevant parameters is obtained. Special care is taken to present a formulation that is simple and useful in the context of practical earthquake engineering design. Some currently used p–Δ amplification factors are discussed in the light of the results obtained.  相似文献   
86.

Background

Forest landscape restoration (FLR) has been adopted by governments and practitioners across the globe to mitigate and adapt to climate change and restore ecological functions across degraded landscapes. However, the extent to which these activities capture CO2 with associated climate mitigation impacts are poorly known, especially in geographies where data on biomass growth of restored forests are limited or do not exist. To fill this gap, we developed biomass accumulation rates for a set of FLR activities (natural regeneration, planted forests and woodlots, agroforestry, and mangrove restoration) across the globe and global CO2 removal rates with corresponding confidence intervals, grouped by FLR activity and region/climate.

Results

Planted forests and woodlots were found to have the highest CO2 removal rates, ranging from 4.5 to 40.7 t CO2 ha?1 year?1 during the first 20 years of growth. Mangrove tree restoration was the second most efficient FLR at removing CO2, with growth rates up to 23.1 t CO2 ha?1 year?1 the first 20 years post restoration. Natural regeneration removal rates were 9.1–18.8 t CO2 ha?1 year?1 during the first 20 years of forest regeneration, followed by agroforestry, the FLR category with the lowest and regionally broad removal rates (10.8–15.6 t CO2 ha?1 year?1). Biomass growth data was most abundant and widely distributed across the world for planted forests and natural regeneration, representing 45% and 32% of all the data points assessed, respectively. Agroforestry studies, were only found in Africa, Asia, and the Latin America and Caribbean regions.

Conclusion

This study represents the most comprehensive review of published literature on tree growth and CO2 removals to date, which we operationalized by constructing removal rates for specific FLR activities across the globe. These rates can easily be applied by practitioners and decision-makers seeking to better understand the positive climate mitigation impacts of existing or planned FLR actions, or by countries making restoration pledges under the Bonn Challenge Commitments or fulfilling Nationally Determined Contributions to the UNFCCC, thereby helping boost FLR efforts world-wide.
  相似文献   
87.
Computational Geosciences - A Correction to this paper has been published: https://doi.org/10.1007/s10596-021-10079-6  相似文献   
88.
Seguí  Carolina  Veveakis  Manolis 《Landslides》2021,18(12):3953-3961
Landslides - In this study, we suggest a temperature-based assessment and mitigation approach for deep-seated landslides that allows to forecast the behavior of the slide and assess its stability....  相似文献   
89.
Carbon isotope compositions of both sedimentary carbonate and organic matter can be used as key proxies of the global carbon cycle and of its evolution through time,as long as they are acquired from waters where the dissolved inorganic carbon(DIC)is in isotope equilibrium with the atmospheric CO2.However,in shallow water platforms and epeiric settings,the influence of local to regional parameters on carbon cycling may lead to DIG isotope variations unrelated to the global carbon cycle.This may be especially true for the terminal Neoproterozoic,when Gondwana assembly isolated waters masses from the global ocean,and extreme positive and negative carbon isotope excursions are recorded,potentially decoupled from global signals.To improve our understanding on the type of information recorded by these excursions,we investigate the pairedδ^13Ccarb andδ^13Corg evolution for an increasingly restricted late Ediacaran-Cambrian foreland system in the West Gondwana interior:the basal Bambui Group.This succession represents a 1~(st)-order sedimentary sequence and records two majorδ^13Ccarb excursions in its two lowermost lower-rank sequences.The basal cap carbonate interval at the base of the first sequence,deposited when the basin was connected to the ocean,hosts antithetical negative and positive excursions forδ^13Ccarb andδ^13Corg,respectively,resulting inΔ^13C values lower than 25‰.From the top of the basal sequence upwards,an extremely positiveδ^13Ccarb excursion is coupled toδ^13Corg,reaching values of+14‰and-14‰,respectively.This positive excursion represents a remarkable basin-wide carbon isotope feature of the Bambui Group that occurs with only minor changes inΔ^13C values,suggesting change in the DIC isotope composition.We argue that this regional isotopic excursion is related to a disconnection between the intrabasinal and the global carbon cycles.This extreme carbon isotope excursion may have been a product of a disequilibria between the basin DIC and atmospheric CO2 induced by an active methanogenesis,favored by the basin restriction.The drawdown of sulfate reservoir by microbial sulfate reduction in a poorly ventilated and dominantly anoxic basin would have triggered methanogenesis and ultimately methane escape to the atmosphere,resulting in a^13C-enriched DIC influenced by methanogenic CO2.Isolated basins in the interior of the Gondwana supercontinent may have represented a significant source of methane inputs to the atmosphere,potentially affecting both the global carbon cycle and the climate.  相似文献   
90.
Purification protocols to extract pollen from lake sediments contain chemicals that alter the carbon and oxygen pollen-isotope values according to pollen characteristics and family affiliation. Modern (raw) pollen of broad-leaved (Alnus glutinosa, Betula pendula, Carpinus betulus, Corylus avellana, Fagus sylvatica and Quercus robur) and coniferous tree species (Picea abies and Pinus sylvestris) were treated with potassium hydroxide (KOH), hydrofluoric acid (HF), sodium hypochlorite (NaClO) and sulphuric acid (H2SO4) to test the impact on δ13Cpollen and δ18Opollen and assess the applicability in purification protocols. Pollen of broad-leaved and coniferous trees reacted differently to chemical exposure, but response patterns are generally alike. Alterations of δ13Cpollen values vary between + 1.0‰ (B. pendula, NaClO-treatment) and −5.0‰ (P. sylvestris, H2SO4-treatment). The δ13Cpollen values of raw and chemically treated samples seem to be related after treatments with KOH, NaClO and HF, whereas the application of H2SO4 led to inconsistent changes among species. The impact of chemicals on δ18Opollen are more diverse and offsets range between +1.1‰ (C. avellana, NaClO-treatment) and −17.9‰ (P. sylvestris, H2SO4-treatment). In general, the use of isotope-altering chemicals in purification protocols should be brought to a minimum, but the application of KOH and NaClO seems mostly unproblematic before δ13Cpollen and δ18Opollen analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号