首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   8篇
大气科学   7篇
地球物理   17篇
地质学   27篇
海洋学   9篇
天文学   58篇
自然地理   9篇
  2023年   1篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2016年   3篇
  2015年   3篇
  2014年   6篇
  2013年   5篇
  2012年   6篇
  2011年   8篇
  2010年   5篇
  2009年   1篇
  2008年   4篇
  2007年   5篇
  2006年   8篇
  2005年   9篇
  2004年   13篇
  2003年   6篇
  2002年   11篇
  2001年   7篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1981年   1篇
  1975年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有127条查询结果,搜索用时 578 毫秒
101.
Coupled CaCO3 dissolution-otavite (CdCO3) precipitation experiments have been performed to 1) quantify the effect of mineral coatings on dissolution rates, and 2) to explore the possible application of this coupled process to the remediation of polluted waters. All experiments were performed at 25°C in mixed-flow reactors. Various CaCO3 solids were used in the experiments including calcite, aragonite, and ground clam, mussel, and cockle shells. Precipitation was induced by the presence of Cd(NO3)2 in the inlet solution, which combined with aqueous carbonate liberated by CaCO3 dissolution to supersaturate otavite. The precipitation of an otavite layer of less than 0.01 μm in thickness on calcite surfaces decreases its dissolution rate by close to two orders of magnitude. This decrease in calcite dissolution rates lowers aqueous carbonate concentrations in the reactor such that the mixed-flow reactor experiments attain a steady-state where the reactive fluid is approximately in equilibrium with otavite, arresting its precipitation. In contrast, otavite coatings are far less efficient in lowering aragonite, and ground clam, mussel, and cockle shell dissolution rates, which are comprised primarily of aragonite. A steady-state is only attained after the precipitation of an otavite layer of 3-10 μm thick; the steady state CaCO3 dissolution rate is 1-2 orders of magnitude lower than that in the absence of otavite coatings. The difference in behavior is interpreted to stem from the relative crystallographic structures of the dissolving and precipitating minerals. As otavite is isostructural with respect to calcite, it precipitates by epitaxial growth directly on the calcite, efficiently slowing dissolution. In contrast, otavite’s structure is appreciably different from that of aragonite. Thus, it will precipitate by random three dimensional heterogeneous nucleation, leaving some pore space at the otavite-aragonite interface. This pore space allows aragonite dissolution to continue relatively unaffected by thin layers of precipitated otavite. Due to the inefficiency of otavite coatings to slow aragonite and ground aragonite shell dissolution, aragonite appears to be a far better Cd scavenging material for cleaning polluted waste waters.  相似文献   
102.
Measurements of atmospheric composition have been made over a remote rainforest landscape. A box model has previously been demonstrated to model the observed daytime chemistry well. However the box model is unable to explain the nocturnal measurements of relatively high [NO] and [O3], but relatively low observed [NO2]. It is shown that a one-dimensional (1-D) column model with simple O3-NOx chemistry and a simple representation of vertical transport is able to explain the observed nocturnal concentrations and predict the likely vertical profiles of these species in the nocturnal boundary layer (NBL). Concentrations of tracers carried over from the end of the night can affect the atmospheric chemistry of the following day. To ascertain the anomaly introduced by using the box model to represent the NBL, vertically-averaged NBL concentrations at the end of the night are compared between the 1-D model and the box model. It is found that, under low to medium [NOx] conditions (NOx?<?1 ppbv), a simple parametrisation can be used to modify the box model deposition velocity of ozone, in order to achieve good agreement between the box and 1-D models for these end-of-night concentrations of NOx and O3. This parametrisation would could also be used in global climate-chemistry models with limited vertical resolution near the surface. Box-model results for the following day differ substantially if this effective nocturnal deposition velocity for ozone is implemented; for instance, there is a 9% increase in the following days peak ozone concentration. However under medium to high [NOx] conditions (NOx > 1 ppbv), the effect on the chemistry due to the vertical distribution of the species means no box model can adequately represent chemistry in the NBL without modifying reaction rate coefficients.  相似文献   
103.
In order to identify the parent bodies of cosmic spherules (melted micrometeorites) with porphyritic olivine (PO) and cryptocrystalline (CC) textures, we measured the oxygen isotopic composition of 15 giant (>800 μm) cosmic spherules recovered in the Transantarctic Mountains, Antarctica, with IR-laser fluorination/mass spectrometry, and we conducted a characterization of their petrographic and magnetic properties. Samples include 6, 8 and 1 spherules of PO, CC and barred olivine (BO) textural types, respectively. Eleven spherules (∼70% of the total: 4/6 PO and 6/8 CC, and the BO spherule) are related to ordinary chondrites based on oxygen isotopic compositions. Olivines in ordinary chondrite-related spherules have compositions Fa8.5-11.8, they are Ni-poor to Ni-rich (0.04-1.12 wt.%), and tend to be richer in CaO than other spherules (0.10-0.17 wt.%). Ordinary-chondrite related spherules also have high magnetite contents (∼2-12 wt.%). One PO and one CC spherules are related to previously identified 17O-enriched cosmic spherules for which the parent body is unknown. One CC spherule has an oxygen isotopic signature relating it to CM/CR carbonaceous chondrites. The majority of PO/CC cosmic spherules derive from ordinary chondrites; this result exemplifies how the texture of cosmic spherules is not only controlled by atmospheric entry heating conditions but also depends on the parent body, whether be it through orbital parameters (entry angle and velocity), or chemistry, mineralogy, or grain size of the precursor.  相似文献   
104.
Accurate measures of global atmospheric energy balance collected since the International Geophysical Year (1957-1958) show statistically significant relationships to regional monthly growing season discharge in east central France (also North Carolina, Texas, and Yucatan). The relationships are frequently curvilinear. Transfer functions can be calculated to reconstruct prehistoric and historic regional hydrological balance and project future effects. An astronomical climatology model is used to estimate past global energy balance. The projections appear to fit sediment, diatom, and pollen records. General circulation model estimates of greenhouse warming are used to drive future hydrological balance determinations.  相似文献   
105.
Glacial aquifers are an important source of groundwater in the United States and require accurate characterization to make informed management decisions. One parameter that is crucial for understanding the movement of groundwater is hydraulic conductivity, K. Nuclear magnetic resonance (NMR) logging measures the NMR response associated with the water in geological materials. By utilizing an external magnetic field to manipulate the nuclear spins associated with 1H, the time-varying decay of the nuclear magnetization is measured. This logging method could provide an effective way to estimate K at submeter vertical resolution, but the models that relate NMR measurements to K require calibration. At two field sites in a glacial aquifer in central Wisconsin, we collected a total of four NMR logs and obtained measurements of K in their immediate vicinity with a direct-push permeameter (DPP). Using a bootstrap algorithm to calibrate the Schlumberger-Doll Research (SDR) NMR-K model, we estimated K to within a factor of 5 of the DPP measurements. The lowest levels of accuracy occurred in the lower-K (K < 10−4 m/s) intervals. We also evaluated the applicability of prior SDR model calibrations. We found the NMR calibration parameters varied with K, suggesting the SDR model does not incorporate all the properties of the pore space that control K. Thus, the expected range of K in an aquifer may need to be considered during calibration of NMR-K models. This study is the first step toward establishing NMR logging as an effective method for estimating K in glacial aquifers.  相似文献   
106.
107.
We present an analysis of the relative bias between early- and late-type galaxies in the Two-degree Field Galaxy Redshift Survey (2dFGRS) – as defined by the η parameter of Madgwick et al., which quantifies the spectral type of galaxies in the survey. We calculate counts in cells for flux-limited samples of early- and late-type galaxies, using approximately cubical cells with sides ranging from 7 to  42 h −1 Mpc  . We measure the variance of the counts in cells using the method of Efstathiou et al., which we find requires a correction for a finite volume effect equivalent to the integral constraint bias of the autocorrelation function. Using a maximum-likelihood technique we fit lognormal models to the one-point density distribution, and develop methods of dealing with biases in the recovered variances resulting from this technique. We then examine the joint density distribution function,   f (δE, δL)  , and directly fit deterministic bias models to the joint counts in cells. We measure a linear relative bias of ≈1.3, which does not vary significantly with ℓ. A deterministic linear bias model is, however, a poor approximation to the data, especially on small scales  (ℓ≤ 28  h −1 Mpc)  where deterministic linear bias is excluded at high significance. A power-law bias model with index   b 1≈ 0.75  is a significantly better fit to the data on all scales, although linear bias becomes consistent with the data for  ℓ≳ 40  h −1 Mpc  .  相似文献   
108.
109.
110.
Food security for a growing world population is high on the list of grand sustainability challenges, as is reducing the pace of biodiversity loss in landscapes of food production. Here we shed new insights on areas that harbor place specific social memories related to food security and stewardship of biodiversity. We call them bio-cultural refugia. Our goals are to illuminate how bio-cultural refugia store, revive and transmit memory of agricultural biodiversity and ecosystem services, and how such social memories are carried forward between people and across cohorts. We discuss the functions of such refugia for addressing the twin goals of food security and biodiversity conservation in landscapes of food production. The methodological approach is first of its kind in combining the discourses on food security, social memory and biodiversity management. We find that the rich biodiversity of many regionally distinct cultural landscapes has been maintained through a mosaic of management practices that have co-evolved in relation to local environmental fluctuations, and that such practices are carried forward by both biophysical and social features in bio-cultural refugia including; genotypes, artifacts, written accounts, as well as embodied rituals, art, oral traditions and self-organized systems of rules. Combined these structure a diverse portfolio of practices that result in genetic reservoirs—source areas—for the wide array of species, which in interplay produce vital ecosystem services, needed for future food security related to environmental uncertainties, volatile financial markets and large scale conflicts. In Europe, processes related to the large-scale industrialization of agriculture threaten such bio-cultural refugia. The paper highlights that the dual goals to reduce pressures from modern agriculture on biodiversity, while maintaining food security, entails more extensive collaboration with farmers oriented toward ecologically sound practices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号