首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1238篇
  免费   64篇
  国内免费   21篇
测绘学   38篇
大气科学   80篇
地球物理   354篇
地质学   481篇
海洋学   137篇
天文学   163篇
综合类   8篇
自然地理   62篇
  2024年   2篇
  2023年   10篇
  2022年   15篇
  2021年   29篇
  2020年   26篇
  2019年   33篇
  2018年   49篇
  2017年   51篇
  2016年   69篇
  2015年   37篇
  2014年   49篇
  2013年   73篇
  2012年   70篇
  2011年   105篇
  2010年   70篇
  2009年   92篇
  2008年   76篇
  2007年   58篇
  2006年   64篇
  2005年   44篇
  2004年   50篇
  2003年   40篇
  2002年   35篇
  2001年   19篇
  2000年   14篇
  1999年   19篇
  1998年   13篇
  1997年   8篇
  1996年   7篇
  1995年   10篇
  1994年   10篇
  1993年   5篇
  1992年   2篇
  1991年   10篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   8篇
  1985年   2篇
  1984年   6篇
  1983年   2篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1971年   5篇
  1970年   4篇
排序方式: 共有1323条查询结果,搜索用时 46 毫秒
281.
282.
Formation and development of salt crusts on soil surfaces   总被引:2,自引:0,他引:2  
The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.  相似文献   
283.
284.
285.
Coral diseases are currently playing a major role in the worldwide decline in coral reef integrity. One of the coral species most afflicted by disease in the Caribbean, and which has been the focus of much research, is the sea fan Gorgonia ventalina. There is, however, very little information regarding the capacity of sea fans to recover after being infected. The aim of this study was to compare the rehabilitation capacity of G. ventalina after diseased‐induced lesions were eliminated either by scraping or extirpating the affected area. Scraping consisted of removing any organisms overgrowing the axial skeleton from the diseased area as well as the purple tissue bordering these overgrowths using metal bristle brushes. Extirpation consisted of cutting the diseased area, including the surrounding purpled tissue, using scissors. The number of scraped colonies that fully or partially rehabilitated after being manipulated and the rates at which the sea fans whose lesions were scrapped grew back healthy tissue were compared among: (i) colonies that inhabited two sites with contrasting environmental conditions; (ii) colonies of different sizes and (iii) colonies with different ratios of area of legions to total colony area (LA/CA). Both strategies proved to be very successful in eliminating lesions from sea fans. In the case of scraping, over 51% of the colonies recovered between 80% and 100% of the lost tissue within 16 months. The number of colonies that recovered from scraping was similar among sites and among colony sizes, but differed significantly depending on the relative amount of lesion to colony area (LA/CA). When lesions were extirpated, lesions did not reappear in any of the colonies. We conclude that lesion scraping is useful for eliminating relatively small lesions (i.e. LA/CA < 10%), as these are likely to recover in a shorter period of time, whereas for relatively large lesions (LA/CA ≥ 10%) it is more appropriate to extirpate the lesion.  相似文献   
286.
Benthic organisms are among the most diverse and abundant in the marine realm, and some species are a key factor in studies related to bioengineering. However, their importance has not been well noted in biogeographic studies. Macrofaunal assemblages associated with subtidal beds of the ribbed mussel (Aulacomya atra) along South America were studied to assess the relationship between their diversity patterns and the proposed biogeographic provinces in the Southeastern Pacific and Southwestern Atlantic Oceans. Samples from ribbed mussel beds were obtained from 10 sites distributed from the Peruvian coast (17°S) to the Argentinean coast (41°S). The sampling included eight beds in the Pacific and two in the Atlantic and the collections were carried out using five 0.04 m2 quadrants per site. Faunal assemblages were assessed through classification analyses using binary and log‐transformed abundance data. Variation in the size and density of mussels, and in the species richness, abundance and structure of their faunal assemblages were tested using a permutational multivariate analysis of variance. Faunal assemblages showed a north–south latitudinal gradient along both the Pacific and Atlantic coasts. Binary and abundance data showed a difference in the resulting clustering arrangement of Pacific sites between 40°S and 44°S, indicating a pattern of continuity in the species distribution associated with biological substrates. At a regional scale, the distribution of species along the South American coast matched the general provincial pattern shown by prior studies, which show two biogeographic units on the Pacific coast separated by an intermediate (probably transitional) zone and a single province on the Atlantic coast extending up to Northern Argentina. Biological substrates such as ribbed mussel beds play an important ecological role by making a similar habitat type available on a large scale for a variety of invertebrate species. Despite such habitat homogeneity, however, the associated fauna exhibit marked distribution breaks, suggesting strong constraints on dispersal. This therefore suggests that macrofaunal assemblages could possibly be used as biogeographic indicators.  相似文献   
287.
The sea star Asterina stellifera has declined during the last decade and is currently abundant only in the southern limit of its former range. We surveyed this population over 5 years to model individual growth and explore the relationship of changes in local abundance with variation in environmental factors and the reproductive status of individuals. Our results show that A. stellifera is a species with slow growth and a relatively long lifespan. Contrary to expectations for temperate species, growth rates were fairly constant through the year and therefore models including seasonal oscillations were inappropriate. The abundance of this species increased significantly from early spring to early summer, likely due to augmented activity and small‐scale aggregation during the reproductive season that affected our estimates of abundance. No significant recruitment occurred during the 5 years studied. The lack of recruitment during long periods and the slow individual growth rates make A. stellifera particularly vulnerable to local extinction. This study was performed prior to the arrival in the study area of the invasive kelp Undaria pinnatifida and side‐gilled sea slug Pleurobranchaea maculata, species that threaten the community structure where A. stellifera lives. Therefore, the information reported here will be essential to assessing the impacts of these exotic species on this sea star population.  相似文献   
288.
Landforms often are represented on maps using abstract cartographic techniques that the reader must interpret for successful three-dimensional terrain visualization. New technologies in 3D landscape representation, both digital and tangible, offer the opportunity to visualize terrain in new ways. The results of a university student workshop, in which traditional 2D versus 3D digital and tangible models were tested, suggest that map-reading skill development is greater when using the 3D technologies.  相似文献   
289.
Location of the southern Caribbean plate boundary has been hindered mainly because it is in large part submerged. Analysis of 28 acoustic reflection profiles along the north-central Venezuelan borderland, and a review of published data, suggest that this borderland is the site of a complex fault zone, formally defined as the Morón fault zone, which encompasses the nodal region of the Boconó-Oca-El Pilar fault system. The Morón fault zone consists of: (1) an eastward extension of the Oca-Chirinos fault zone at about 10° 50′ N latitude; (2) a probable eastward continuation of the Boconó-Morón faults along the Venezuelan coast, which splits into the Avila and Macuto faults, north and east of Caracas; (3) the Tacagua fault, which is a southeastward trending splinter fault of the Oca-Chirinos fault zone; (4) and the westward extension of the Cariaco pull-apart basin and the El Pilar fault zone. All of these faults and fault zones are active, as shown by offset sea bottom, offset Pleistocene-Holocene features, and seismicity. It is suggested that the Oca-Chirinos fault zone represents a formerly more active part of the plate boundary. Since the Late Tertiary (?) or Quaternary, the Boconó fault zone was incorporated into the plate boundary, and the northwestern block (Bonaire block) was thrust northeastward over the Caribbean crust.  相似文献   
290.
Posidonia oceanica is a slow growing seagrass species that extends via growing rhizomes that grow only centimetres both horizontally and vertically each year. Posidonia oceanica forms topographically complex biogenic reefs of dead rhizome and sediments that are up to 4 m in height that are called “matte”. This study investigates the role of slow horizontal and vertical growth of rhizomes in the formation of topographic complexity in P. oceanica matte using agent-based modelling. The simulated infilling of landscapes by P. oceanica was run over 600 iterations (years) for 10 random starts of 150 agents each. Initial infilling rates were very slow and P. oceanica had limited cover after a century of growth. Growth accelerated after 100 years but plateaued after 400 years such that after 600 years only two-thirds of the landscape was occupied by P. oceanica. The pattern of spread of agents was initially random in direction but after larger patches were formed spread was radial from these patches. The seagrass landscape was initially highly fragmented with many small separate patches made up of a few agents each, with a Landscape Division index close to 1. Between 300 and 600 years Landscape Division declined sharply to 0.42, indicating patches had coalesced into larger more continuous meadows forming a less fragmented landscape. Perimeter to area ratio of seagrass patches declined exponentially from >1 to approximately 0.2 over 600 years of simulation. The matte developed from growth of patches and its greatest height occurred in more continuously occupied cells of the grid. The topography of the reef that occupied two-thirds of the landscape after six centuries of growth could be described as a pattern of channels between reef plateaus elevated 1–2 m above channels. These results demonstrate that development in P. oceanica meadows of three-dimensional structure, in the formation of biogenic reefs, can be explained by, and is an emergent property of, slow horizontal and vertical rhizome growth rates combined with the time it takes for the accumulation of rhizomes in any region of the landscape. As such, the model provides a parsimonious explanation for the development of complex matte topography.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号