首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6363篇
  免费   607篇
  国内免费   177篇
测绘学   271篇
大气科学   661篇
地球物理   2268篇
地质学   2570篇
海洋学   400篇
天文学   486篇
综合类   193篇
自然地理   298篇
  2023年   12篇
  2022年   20篇
  2021年   42篇
  2020年   31篇
  2019年   41篇
  2018年   479篇
  2017年   420篇
  2016年   314篇
  2015年   184篇
  2014年   159篇
  2013年   186篇
  2012年   711篇
  2011年   519篇
  2010年   180篇
  2009年   221篇
  2008年   191篇
  2007年   165篇
  2006年   185篇
  2005年   872篇
  2004年   914篇
  2003年   687篇
  2002年   207篇
  2001年   88篇
  2000年   56篇
  1999年   33篇
  1998年   18篇
  1997年   23篇
  1996年   16篇
  1995年   11篇
  1994年   11篇
  1993年   5篇
  1992年   4篇
  1991年   19篇
  1990年   15篇
  1989年   8篇
  1988年   4篇
  1987年   7篇
  1986年   8篇
  1985年   3篇
  1984年   6篇
  1983年   3篇
  1981年   6篇
  1980年   5篇
  1976年   3篇
  1975年   5篇
  1973年   3篇
  1971年   5篇
  1970年   4篇
  1969年   3篇
  1965年   3篇
排序方式: 共有7147条查询结果,搜索用时 31 毫秒
121.
122.
Groundwater vulnerability has been subject of much research due to the valuable information it provides concerning groundwater protection and exploitation potential. Up to now, most groundwater vulnerability studies adopt subjective systems of rating the various factors and subsequently, their results are often ambiguous and contradicting. Within the present study a methodology for the estimation of intrinsic groundwater vulnerability at the aquifer scale is presented. The methodology is based on travel time estimation from specified sources of pollution to the aquifer. Besides the deterministic calculation of travel times, the methodology provides a rating system for each pollution source, based on its relative severity and the estimated threat that it poses to the aquifer. Therefore, it can be regarded as a hybrid method that couples the advantages provided by the physically based methods with those of the subjective rating systems. The methodology is applied to the Neon Sidirochorion aquifer, Northeastern Greece, an overexploited aquifer where river waters, sea waters and lake waters interact, causing groundwater quality deterioration to the aquifer. The results indicated that the proposed groundwater vulnerability assessment methodology is well capturing pollution related to saltwater intrusion and agricultural activities, while it is concluded that the conceptual model is significantly affecting the vulnerability assessment results and therefore has to be previously developed.  相似文献   
123.
Blasting operations usually produce significant environmental problems which may cause severe damage to the nearby areas. Air-overpressure (AOp) is one of the most important environmental impacts of blasting operations which needs to be predicted and subsequently controlled to minimize the potential risk of damage. In order to solve AOp problem in Hulu Langat granite quarry site, Malaysia, three non-linear methods namely empirical, artificial neural network (ANN) and a hybrid model of genetic algorithm (GA)–ANN were developed in this study. To do this, 76 blasting operations were investigated and relevant blasting parameters were measured in the site. The most influential parameters on AOp namely maximum charge per delay and the distance from the blast-face were considered as model inputs or predictors. Using the five randomly selected datasets and considering the modeling procedure of each method, 15 models were constructed for all predictive techniques. Several performance indices including coefficient of determination (R 2), root mean square error and variance account for were utilized to check the performance capacity of the predictive methods. Considering these performance indices and using simple ranking method, the best models for AOp prediction were selected. It was found that the GA–ANN technique can provide higher performance capacity in predicting AOp compared to other predictive methods. This is due to the fact that the GA–ANN model can optimize the weights and biases of the network connection for training by ANN. In this study, GA–ANN is introduced as superior model for solving AOp problem in Hulu Langat site.  相似文献   
124.
125.
The method of obtaining zircon samples affects estimation of the global U-Pb age distribution.Researchers typically collect zircons via convenience sampling and cluster sampling.When using these techniques,weight adjustments proportional to the areas of the sampled regions improve upon unweighted estimates.Here,grid-area and modern sediment methods are used to weight the samples from a new database of 418,967 U-Pb ages.Preliminary tests involve two age models.Model-1 uses the most precise U-Pb ages as the best ages.Model-2 uses the~(206)Pb/~(238)U age as the best age if it is less than a1000 Ma cutoff,otherwise it uses the~(207)Pb/~(206)Pb age as the best age.A correlation analysis between the Model-1 and Model-2 ages indicates nearly identical distributions for both models.However,after applying acceptance criteria to include only the most precise analyses with minimal discordance,a histogram of the rejected samples shows excessive rejection of the Model-2 analyses around the1000 Ma cutoff point.Because of the excessive rejection rate for Model-2,we select Model-1 as the preferred model.After eliminating all rejected samples,the remaining analyses use only Model-1 ages for five rock-type subsets of the database:igneous,meta-igneous,sedimentary,meta-sedimentary,and modern sediments.Next,time-series plots,cross-correlation analyses,and spectral analyses determine the degree of alignment among the time-series and their periodicity.For all rock types,the U-Pb age distributions are similar for ages older than 500 Ma,but align poorly for ages younger than 500 Ma.The similarities(500 Ma)and differences(500 Ma)highlight how reductionism from a detailed database enhances understanding of time-dependent sequences,such as erosion,detrital transport mechanisms,lithification,and metamorphism.Time-series analyses and spectral analyses of the age distributions predominantly indicate a synchronous period-tripling sequence of~91-Myr,~273-Myr,and~819-Myr among the various rock types.  相似文献   
126.
International Journal of Earth Sciences - The geometry and emplacement of the ~ 96 km2, Late Cretaceous Sintra Igneous complex (SIC, ca. 80 Ma) into the West Iberian passive...  相似文献   
127.
International Journal of Earth Sciences - The Western Sierras Pampeanas (WSP) of Argentina record a protracted geological history from the Mesoproterozoic assembly of the Rodinia supercontinent to...  相似文献   
128.
Mount Bulusan, the Philippines’ fourth most active volcano, erupted in February 21, 2011, sending volcanic ash and pyroclastic materials to its surrounding rivers. The waters drained into the estuary of harmful algal blooms plagued Sorsogon Bay. We aim to determine the impact of the 2011 volcanic eruption and the preceding volcanic ash emissions to the dissolved silica concentration of rivers draining the flanks of Mt. Bulusan and its possible implications to the phytoplankton assemblage of the bay. Six river water sampling periods from August 2010 to October 2012 overlapped with Mt. Bulusan’s active phase of volcanism. Our data shows that mean river silica from pre-eruption levels of ~?500 μM increased by more than 200% during and post-eruption. Highest Si concentration of 2270 μM was measured from Cadacan River in August 2011. Here, we argue that the sustained general increase of dissolved silica is due to the silica-containing materials from Mt. Bulusan’s eruption and that their concentration in river waters is also a function of watershed lithology and precipitation. Increase in dissolved silica and other nutrients caused a shift to diatom domination and, possibly, termination of Pyrodinium bahamense var. compressum blooms. Silica load increase in embayments is a natural process that controls the dominance of algae. Our study also highlights the importance of Philippine rivers to the global ocean silica budget as a function of high precipitation, tectonics in general, and volcanism in particular.  相似文献   
129.
Estuaries are productive and ecologically important ecosystems, incorporating environmental drivers from watersheds, rivers, and the coastal ocean. Climate change has potential to modify the physical properties of estuaries, with impacts on resident organisms. However, projections from general circulation models (GCMs) are generally too coarse to resolve important estuarine processes. Here, we statistically downscaled near-surface air temperature and precipitation projections to the scale of the Chesapeake Bay watershed and estuary. These variables were linked to Susquehanna River streamflow using a water balance model and finally to spatially resolved Chesapeake Bay surface temperature and salinity using statistical model trees. The low computational cost of this approach allowed rapid assessment of projected changes from four GCMs spanning a range of potential futures under a high CO2 emission scenario, for four different downscaling methods. Choice of GCM contributed strongly to the spread in projections, but choice of downscaling method was also influential in the warmest models. Models projected a ~2–5.5 °C increase in surface water temperatures in the Chesapeake Bay by the end of the century. Projections of salinity were more uncertain and spatially complex. Models showing increases in winter-spring streamflow generated freshening in the Upper Bay and tributaries, while models with decreased streamflow produced salinity increases. Changes to the Chesapeake Bay environment have implications for fish and invertebrate habitats, as well as migration, spawning phenology, recruitment, and occurrence of pathogens. Our results underline a potentially expanded role of statistical downscaling to complement dynamical approaches in assessing climate change impacts in dynamically challenging estuaries.  相似文献   
130.
Aplite dikes intruding the Proterozoic 1.42(±?3) Ga Longs Peak-St. Vrain Silver Plume-type peraluminous granite near Jamestown, Colorado, contain F, P, and rare earth element (REE)-rich globular segregations, with 40–46% REE, 3.7–4.8 wt% P2O5, and 5–8 wt% F. A combination of textural features and geochemical data suggest that the aplite and REE-rich globular segregations co-existed as two co-genetic liquids prior to their crystallization, and we propose that they are formed by silicate–fluoride?+?phosphate (+?S?+?CO2) melt immiscibility following ascent, cooling, and decompression of what was initially a single homogeneous magma that intruded the granite. The REE distribution coefficients between the silica-rich aplites and REE-rich segregations are in good agreement with experimentally determined distribution coefficients for immiscible silicate–fluoride?+?phosphate melts. Although monazite-(Ce) and uraninite U–Th–Pb microprobe ages for the segregations yield 1.420(±?25) and 1.442(±?8) Ga, respectively, thus suggesting a co-genetic relationship with their host granite, εNd1.42Ga values for the granites and related granitic pegmatites range from ??3.3 to ??4.7 (average ??3.9), and differ from the values for both the aplites and REE-rich segregations, which range from ??1.0 to ??2.2 (average ??1.6). Furthermore, the granites and pegmatites have (La/Yb)N <50 with significant negative Eu anomalies, which contrast with higher (La/Yb)N >100 and absence of an Eu anomaly in both the aplites and segregations. These data are consistent with the aplite dikes and the REE-rich segregations they contain being co-genetic, but derived from a source different from that of the granite. The higher εNd1.42Ga values for the aplites and REE-rich segregations suggest that the magma from which they separated had a more mafic and deeper, dryer and hotter source in the lower crust or upper mantle compared to the quartzo-feldspathic upper crustal source proposed for the Longs Peak-St. Vrain granite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号