首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   401篇
  免费   15篇
  国内免费   6篇
测绘学   12篇
大气科学   37篇
地球物理   152篇
地质学   115篇
海洋学   40篇
天文学   50篇
自然地理   16篇
  2022年   6篇
  2021年   7篇
  2020年   5篇
  2019年   4篇
  2018年   10篇
  2017年   14篇
  2016年   18篇
  2015年   17篇
  2014年   27篇
  2013年   33篇
  2012年   19篇
  2011年   27篇
  2010年   20篇
  2009年   42篇
  2008年   22篇
  2007年   14篇
  2006年   13篇
  2005年   13篇
  2004年   8篇
  2003年   7篇
  2002年   10篇
  2001年   6篇
  2000年   6篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1996年   7篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1991年   3篇
  1990年   3篇
  1983年   4篇
  1981年   2篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1958年   3篇
  1956年   2篇
  1955年   3篇
  1954年   1篇
  1953年   2篇
  1952年   2篇
  1951年   3篇
  1950年   3篇
  1949年   1篇
  1948年   1篇
  1946年   2篇
  1945年   1篇
  1944年   3篇
排序方式: 共有422条查询结果,搜索用时 15 毫秒
41.
42.
The present paper proposes equivalent stiffness and energy dissipation properties of reinforced concrete hollow bridge piers to be used in the context of response spectrum performance based assessment and design. The work is carried out by performing parametric numerical analysis using a 2D fibre model calibrated against experimental results and by varying the longitudinal steel reinforcement ratio, height over width ratio, normalised axial force, level of confinement and concrete class of a rectangular hollow section reinforced with Tempcore B500C steel. The results of the analysis are given in the form of charts and closed form expressions for the yield curvature and moment, ultimate ductility, post yielding stiffness ratio and energy dissipated of the section, and are translated to the member level through the plastic hinge length approach. Likewise, the parameters of a Takeda model derived from the parametric analysis are given for use in nonlinear time history analysis.  相似文献   
43.
The watershed hydrologic model TOPMODEL was used to estimate interbasin groundwater flow (IGF) into a small lowland rainforest watershed in Costa Rica. IGF is a common hydrological process but often difficult to quantify. Four‐year simulations (2006–2009) using three different model approaches gave estimates of IGF that were very similar to each other (10.1, 10.2, and 9.8 m/year) and to an earlier estimate (10.0 m/year) based on 1998–2002 data from a budget study that did not use a hydrologic simulation model, providing confidence in the new estimates and suggesting each of the three model approaches is viable. Results show no significant temporal variation in IGF during 2006–2009 (or between this period and the earlier study from 1998–2002). Simulations of the 16 consecutive 3‐month periods in 2006–2009 gave 16 values of IGF rate with a mean (10.1 m/year, standard deviation = 0.6 m/year) very similar to the estimates above from the 4‐year simulations. This suggests the modified version of TOPMODEL can be used to model stream discharge and estimate IGF for sub‐annual time periods during which change in water storage is not necessarily equal to zero. Thus, simple watershed models may be used to estimate IGF based on even relatively short calibration periods, making such models useful tools in the study of this widespread hydrological process that affects water and chemical fluxes and budgets but is often difficult and costly to quantify. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
44.
45.
46.
Climate Dynamics - The original version of the article contained errors in Fig.  相似文献   
47.
To better prioritise adaptation strategies to a changing climate that are currently being developed, there is a need for quantitative regional level assessments that are systematic and comparable across multiple weather hazards. This study presents an indicator-based impact assessment framework at NUTS-2 level for the European Union that quantifies potential regional changes in weather-related hazards: heat stress in relation to human health, river flood risk, and forest fire risk. This is done by comparing the current (baseline) situation with two future time periods, 2011–2040 and 2041–2070. The indicator values for the baseline period are validated against observed impact data. For each hazard, the method integrates outcomes of a set of coherent high-resolution regional climate models from the ENSEMBLES project based on the SRES A1B emission scenario, with current and projected non-climatic drivers of risk, such as land use and socio-economic change. An index of regional adaptive capacity has been developed and compared with overall hazard impact in order to identify the potentially most vulnerable regions in Europe. The results show strongest increases in impacts for heat stress, followed by forest fire risk, while for flood risk the sign and magnitude of change vary across regions. A major difference with previous studies is that heat stress risk could increase most in central Europe, which is due to the ageing population there. An overall assessment combining the three hazards shows a clear trend towards increasing impact from climaterelated natural hazards for most parts of Europe, but hotspot regions are found in eastern and southern Europe due to their low adaptive capacities. This spatially explicit assessment can serve as a basis for discussing climate adaptation mainstreaming, and priorities for regional development in the EU.  相似文献   
48.
This study investigates the spatial and temporal characteristics of cold surges that propagates northward along the eastern flank of the Andes from subtropical to tropical South America analysing wintertime in situ daily minimum temperature observations from Argentina, Bolivia and Peru and ERA-40 reanalysis over the 1975–2001 period. Cold surges usually last 2 or 3 days but are generally less persistent in the southern La Plata basin compared to tropical regions. On average, three to four cold surges are reported each year. Our analysis reveals that 52 % of cold episodes registered in the south of La Plata basin propagate northward to the northern Peruvian Amazon at a speed of around 20 m s?1. In comparison to cold surges that do not reach the tropical region, we demonstrate that these cold surges are characterized, before they reach the tropical region, by a higher occurrence of a specific circulation pattern associated to southern low-level winds progression toward low latitudes combined with subsidence and dry condition in the middle and low troposphere that reinforce the cold episode through a radiative effect. Finally, the relationship between cold surges and atmosphere dynamics is illustrated for the two most severe cold intrusions that reached the Peruvian and Bolivian Amazon in the last 20 years.  相似文献   
49.
The sustainability of social-ecological systems depends on river flows being maintained within a range to which those systems are adapted. In order to determine the extent of this natural range of variation, we assess ecological flow thresholds and the occurrence of potentially damaging flood events to society in the context of the Lower Brahmaputra river basin. The ecological flow threshold was calculated using twenty-two ‘Range of Variability (RVA)’ parameters, considering the range between?±?1 standard deviation from the mean of the natural flow. Damaging flood events were calculated using flood frequency analysis of Annual Maxima series and using the flood classification of Bangladesh. The climate change impacts on future river flow were calculated by using a weighted ensemble analysis of twelve global circulation models (GCMs) outputs driving a large-scale hydrologic model. The simulated climate change induced altered flow regime of the Lower Brahmaputra River Basin was then investigated and compared with the calculated threshold flows. The results demonstrate that various parameters including the monthly mean of low flow (January, February and March) and high flow (June, July and August) periods, the 7-day average minimum flow, and the yearly maximum flow will exceed the threshold conditions by 1956–1995 under the business-as-usual A1B and A2 future scenarios. The results have a number of policy level implications for government agencies of the Lower Brahmaputra River Basin, specifically for Bangladesh. The calculated thresholds may be used as a good basis for negotiations with other riparian countries of the basin. The methodological approach presented in this study can be applied to other river basins and provide a useful basis for transboundary water resources management.  相似文献   
50.
Despite an increasing understanding of potential climate change impacts in Europe, the associated uncertainties remain a key challenge. In many impact studies, the assessment of uncertainties is underemphasised, or is not performed quantitatively. A key source of uncertainty is the variability of climate change projections across different regional climate models (RCMs) forced by different global circulation models (GCMs). This study builds upon an indicator-based NUTS-2 level assessment that quantified potential changes for three climate-related hazards: heat stress, river flood risk, and forest fire risk, based on five GCM/RCM combinations, and non-climatic factors. First, a sensitivity analysis is performed to determine the fractional contribution of each single input factor to the spatial variance of the hazard indicators, followed by an evaluation of uncertainties in terms of spread in hazard indicator values due to inter-model climate variability, with respect to (changes in) impacts for the period 2041–70. The results show that different GCM/RCM combinations lead to substantially varying impact indicators across all three hazards. Furthermore, a strong influence of inter-model variability on the spatial patterns of uncertainties is revealed. For instance, for river flood risk, uncertainties appear to be particularly high in the Mediterranean, whereas model agreement is higher for central Europe. The findings allow for a hazard-specific identification of areas with low vs. high model agreement (and thus confidence of projected impacts) within Europe, which is of key importance for decision makers when prioritising adaptation options.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号