首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   2篇
大气科学   6篇
地球物理   13篇
地质学   15篇
海洋学   13篇
天文学   14篇
自然地理   15篇
  2021年   2篇
  2019年   1篇
  2017年   2篇
  2016年   4篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   3篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2006年   5篇
  2005年   6篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1993年   1篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1967年   1篇
排序方式: 共有76条查询结果,搜索用时 31 毫秒
71.
An interpretation of Akeno giant air shower array (AGASA) data by comparing the experimental results with the simulated ones by cosmic ray simulation for KASCADE (CORSIKA) has been made. General features of the electromagnetic component and low energy muons observed by AGASA can be well reproduced by CORSIKA. The form of the lateral distribution of charged particles agrees well with the experimental one between a few hundred metres and 2000 m from the core, irrespective of the hadronic interaction model studied and the primary composition (proton or iron). It does not depend on the primary energy between 1017.5 and 1020 eV as the experiment shows. If we evaluate the particle density measured by scintillators of 5 cm thickness at 600 m from the core S0(600), suffix 0 denotes the vertically incident shower) by taking into account the similar conditions as in the experiment, the conversion relation from S0(600) to the primary energy is expressed as E (eV)=2.15×1017S0(600)1.015 within 10% uncertainty among the models and composition used, which suggests the present AGASA conversion factor is the lower limit. Although the form of the muon lateral distribution fits well to the experiment within 1000 m from the core, the absolute values change with hadronic interaction model and primary composition. The slope of the ρμ(600) (muon density above 1 GeV at 600 m from the core) vs. S0(600) relation in experiment is flatter than that in simulation of any hadronic model and primary composition. As the experimental slope is constant from 1015 to 1019 eV, we need to study this relation in a wide primary energy range to infer the rate of change of chemical composition with energy.  相似文献   
72.
After Eyjafjallajökull volcano eruption on 14 April 2010, due to a complex air mass circulation, Romania was exposed to volcanic ash and its mixture with continental aerosols. Ash particles with an average Ångström (UV-VIS) exponent of 1.4 ± 0.2 and (VIS-IR) of 1.2 ± 0.3, a color ratio (VIS-UV) of 0.54 and (IR-VIS) of 0.49, an average particle depolarization value ~9.4%, and a lidar ratio of 50 sr were retrieved on 18 April from multiwavelength Raman lidar measurements in Bucharest. Mixed volcanic ash with mineral dust particles advected from Sahara, depolarization ~12%, Ångström (UV-VIS) exponent of 1.25 ± 0.25 and (VIS-IR) of 1.45 ± 0.25, an increased color ratio (VIS-UV) of 0.61, (IRVIS) of 0.39 and lidar ratio of 53 sr were identified on 28 April. From observations in Poland conducted by an elastic lidar at 532 nm and a ceilometer at 1064 nm we retrieved an average backscatter related Ångström (VIS-IR) exponent of 1.25 ± 0.35, and a color ratio (IR-VIS) of 0.53 in the layer at about 5.5 km during the night of 16/17 April, indicating fresh ash over Warsaw.  相似文献   
73.
The giant awakes     
J Knapp 《Astronomy& Geophysics》2005,46(6):6.16-6.20
Johannes Knapp of the Pierre Auger Collaboration reports on the first promising results from the Pierre Auger Observatory.  相似文献   
74.
The thermal expansion of gehlenite, Ca2Al[AlSiO7], (up to T=830 K), TbCaAl[Al2O7] (up to T=1100 K) and SmCaAl[Al2O7] (up to T=1024 K) has been determined. All compounds are of the melilite structure type with space group Thermal expansion data were obtained from in situ X-ray powder diffraction experiments in-house and at HASYLAB at the Deutsches Elektronen Synchrotron (DESY) in Hamburg (Germany). The thermal expansion coefficients for gehlenite were found to be: α1=7.2(4)×10−6×K−1+3.6(7)×10−9ΔT×K−2 and α3=15.0(1)×10−6×K−1. For TbCaAl[Al2O7] the respective values are: α1=7.0(2)×10−6×K−1+2.0(2)×10−9ΔT×K−2 and α3=8.5(2)×10−6×K−1+2.0(3)×10−9ΔT×K−2, and the thermal expansion coefficients for SmCaAl[Al2O7] are: α1=6.9(2)×10−6×K−1+1.7(2)×10−9ΔT×K−2 and α3=9.344(5)×10−6×K−1. The expansion mechanisms of the three compounds are explained in terms of structural trends obtained from Rietveld refinements of the crystal structures of the compounds against the powder diffraction patterns. No structural phase transitions have been observed. While gehlenite behaves like a ‘proper’ layer structure, the aluminates show increased framework structure behavior. This is most probably explained by stronger coulombic interactions between the tetrahedral conformation and the layer-bridging cations due to the coupled substitution (Ca2++Si4+)–(Ln 3++Al3+) in the melilite-type structure. This article has been mistakenly published twice. The first and original version of it is available at .  相似文献   
75.
Water column and seabed samples were obtained from 92 stations on the Amazon continental shelf during October of 1979. Uptake of silica near and southeast of the river mouth began at a salinity of 8%. and accounted for 17% of the riverine silica flux to this region. Uptake northwest of the river mouth began at a salinity of 20%. and resulted in 33% removal of the riverine silica flux. Examination of filtered suspended solids revealed abundant diatoms in the surface waters, including Coscinodiscus. Skeletonema, Synedra. and Thalassiosira. The biological uptake of silica appears to be dependent on three factors: turbidity, turbulence, and nutrient availability. There was no evidence of abiological removal of silica in the Amazon estuary. 75 to 88% of the silica removed from surface waters by diatoms dissolves prior to accumulation in the seabed. Based on the mean biogenic silica content of shelf sediment (0.25%) and estimates of rates of sediment accumulation, the biogenic silica accumulation rate on the shelf is 2 × 1012 g/yr, which represents only 4% of the dissolved silica supplied by the Amazon River. Biological uptake of silica in estuarine surface waters may not accurately reflect permanent removal of biogenic silica to the seabed because of dissolution which occurs in bottom waters and near the sediment-water interface.  相似文献   
76.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号