首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1777篇
  免费   91篇
  国内免费   49篇
测绘学   61篇
大气科学   149篇
地球物理   377篇
地质学   636篇
海洋学   122篇
天文学   416篇
综合类   10篇
自然地理   146篇
  2023年   13篇
  2022年   10篇
  2021年   36篇
  2020年   44篇
  2019年   42篇
  2018年   83篇
  2017年   71篇
  2016年   85篇
  2015年   79篇
  2014年   89篇
  2013年   117篇
  2012年   69篇
  2011年   103篇
  2010年   85篇
  2009年   91篇
  2008年   91篇
  2007年   93篇
  2006年   78篇
  2005年   61篇
  2004年   66篇
  2003年   50篇
  2002年   50篇
  2001年   36篇
  2000年   47篇
  1999年   36篇
  1998年   21篇
  1997年   26篇
  1996年   19篇
  1995年   11篇
  1994年   14篇
  1993年   11篇
  1992年   15篇
  1991年   8篇
  1990年   10篇
  1989年   7篇
  1988年   6篇
  1987年   7篇
  1986年   10篇
  1985年   12篇
  1984年   10篇
  1983年   11篇
  1982年   6篇
  1981年   8篇
  1980年   7篇
  1979年   8篇
  1978年   9篇
  1977年   6篇
  1976年   6篇
  1974年   5篇
  1973年   6篇
排序方式: 共有1917条查询结果,搜索用时 500 毫秒
991.
Separated magnetic and nonmagnetic components from the ordinary chondrites Dhajala (H3.8) and Ochansk (H4) were analyzed for their Re-Os isotopic compositions, as well as for the abundances of the highly siderophile elements (HSE) Re, Os, Ir, Ru, Pt and Pd. The Re-Os isotopic systematics of these components are used to constrain the timing of HSE fractionations, and assess the level of open-system behavior of these elements in each of the different components. The high precision, isotope dilution mass spectrometric analyses of the HSE are used to constrain the origins of, and possible relations between some of the diverse components present in these chondrites. The relative and absolute abundances of the HSE differ considerably among the components. Metal fractions have Re/Os that are factors of ∼2 (Dhajala) to ∼3 (Ochansk) higher than those of their nonmagnetic fractions. The isotopic data for both meteorites are consistent with the largest Re-Os fractionations occurring between metal and nonmagnetic components early in solar system history, although minor to moderate late stage, open-system behavior, and limited variations in Re/Os preclude a precise determination of the age for that fractionation. Open-system behavior is generally absent to minor in the metal fractions, and highly variable in nonmagnetic fractions. Re/Os ratios of nonmagnetic fractions deviate as much as 40% from a primordial isochron. Although some deviations are large for isochron applications, nearly all are negligible with respect to consideration of fractionation processes controlling the HSE.Metal from both meteorites contains about 90% of the total budget of HSE. Metal in Ochansk has ∼2 to 10 times the abundances of the bulk meteorite, while metal from the matrix of Dhajala has ∼2 to 4 times the abundances of the bulk. Fine metal in both meteorites has higher abundances than coarse metal, as has been previously observed. Nonmagnetic components, consisting of chondrules and matrix from which metal was removed in the laboratory, have highly fractionated HSE, characterized by much lower Re/Os than the bulk meteorites, as well as large relative depletions in Pd. The abundances of Re, Os, Ir, Ru and Pt in the nonmagnetic fractions are 14-120 ng/g, much higher than would be expected if they had equilibrated with the metal phases present (150-16,000 ng/g). Collectively, the data are consistent with the HSE budget in ordinary chondrites being dominated by two HSE-bearing carrier phases with distinct compositions. These phases formed separately, and never subsequently equilibrated. Metal components incorporated a HSE carrier that formed at high through moderate temperatures and relatively high pressures, such that the relatively volatile Pd behaved coherently with the more refractory HSE. Nonmagnetic fractions from both chondrules and matrix have HSE compositions that likely require at least two processes that fractionated the HSE. Depletions in Pd are consistent with the presence of HSE carriers that formed as either highly refractory condensates, or residues of high degrees of metal melting. Depletions in Re may implicate a period of relatively high fO2 during which a volatile form of Re was separated from the other HSE.  相似文献   
992.
The Copper Creek mining district, southeastern Arizona, contains more than 500 mineralized breccia pipes, buried porphyry-style, copper-bearing stockworks, and distal lead–silver veins. The breccia pipes are hosted by the Copper Creek Granodiorite and the Glory Hole volcanic rocks. The unexposed Mammoth breccia pipe, solely recognized by drilling, has a vertical extent of 800 m and a maximum width of 180 m. The pipe consists of angular clasts of granodiorite cemented by quartz, chalcopyrite, bornite, anhydrite, and calcite. Biotite 40Ar/39Ar dates suggest a minimum age of 61.5 ± 0.7 Ma for the host Copper Creek Granodiorite and 40Ar/39Ar dates on hydrothermal sericite indicate an age of 61.0 ± 0.5 Ma for copper mineralization. Fluid inclusion studies suggest that a supercritical fluid with a salinity of approximately 10 wt.% NaCl equiv. condensed to a dilute aqueous vapor (1–2.8 wt.% NaCl equiv.) and a hypersaline brine (33.4–35.1 wt.% NaCl equiv.). Minimum trapping temperatures are 375°C and trapping depths are estimated at 2 km. Sulfur isotope fractionation of cogenetic anhydrite and chalcopyrite yields a temperature of mineralization of 469 ± 25°C. Calculated oxygen and hydrogen isotope values for fluids in equilibrium with quartz and sericite range from 10.2‰ to 13.4‰ and −60‰ to −39‰, respectively, suggesting that the mineralizing fluid was dominantly magmatic. Evidence from the stable isotope and fluid inclusion analyses suggests that the fluids responsible for Cu mineralization within the Mammoth breccia pipe exsolved from a gray porphyry phase found at the base of the breccia pipe.  相似文献   
993.
The Lost City Hydrothermal Field hosts a distinctive microbial ecosystem that is supported by the products of serpentinization reactions. The calcium carbonate chimneys here contain abundant isoprenoidal and non-isoprenoidal ether lipids, the structural diversity of which is similar to that found in carbonate crusts at cold seeps where anaerobic oxidation of methane (AOM) is the dominant biogeochemical process. The microbial community at Lost City includes abundant archaea, which largely belong to a single phylotype within the methanogenic Methanosarcinales. Isoprenoidal diethers derived from these archaea have polar head groups comprising phosphatidylglycerol or monoglycosyl moieties, although many isoprenoidal diethers detected in these carbonates lack head groups.The non-isoprenoidal diether lipids at Lost City are largely glycolipids. Glycosydic non-isoprenoidal diethers have not previously been reported from any environments or bacterial isolates. Glycolipids are common in archaea where they contain isoprenoidal hydrocarbon cores ether linked to glycerol. Glycolipids also occur in some bacteria and in these non-isoprenoidal fatty acid chains are ester linked to glycerol. However, the glycosylated non-isoprenoidal diether lipids at Lost City contain a previously undetected combination of archaeal and bacterial traits that might be an adaptive response to the vent environment. We hypothesize that utilization of glycosyl head groups instead of phosphatidyl head groups is a strategy for conservation of phosphate by organisms growing in fluids low in this essential nutrient.  相似文献   
994.
Adjacent magnetite and chert bands and reference standards FeR-3 and FeR-4 from the Neoarchean Temagami iron-formation (IF) show shale-normalized rare earth and yttrium (REY) patterns with low Nd/Yb ratios and positive Eu, Gd and Y anomalies, indicating that they formed as marine chemical sediments. In contrast to previous claims, none of the samples shows any Ce anomaly, indicating the absence of oxidative Ce-REY decoupling and arguing against oxic conditions in the wider vicinity of the Neoarchean “Temagami seabasin”. The distribution of Zr, Hf and Ta yields Zr/Hf and Hf/Ta ratios that differ from those of chondrites, average upper continental crust and local shales, suggesting that the Temagami IF is the only case observed so far in which a significant fraction of these elements is non-detrital but sourced from seawater. If Neoarchean seawater was characterized by Zr/Hf and Hf/Ta ratios similar to those of modern seawater these ratios point towards preferential scavenging of Hf over Zr and Ta, as is typical of the modern ocean. Similar to the 2.9 Ga old Mozaan IF in the Pongola Supergroup, South Africa, the Temagami IF shows low Th/U ratios that differ from those of the respective local shales and from that of average upper continental crust. Decoupling of U and Th results from U4+ oxidation in the Earth's surface system and fractionated Th/U ratios in these marine chemical sediments are, therefore, at odds with the lack of Ce anomalies. This suggests a different redox-sensitivity of the two paleo-redox-proxies Th–U and Ce-REY and demonstrates that the Temagami IF and the Mozaan IF warrant further study of other paleo-redox-proxies.  相似文献   
995.
Based on the service specifications of the Open Geospatial Consortium (OGC), Spatial Data Infrastructures (SDI) support the visualization, access to vector and raster data or managing and search for spatial data. A standard for distributed spatial data processing was missing for a long time. This issue was addressed by the development of the OpenGIS Web Processing Service (WPS) specification. However, to process and analyze massive Digital Elevation Models (DEM) computing power and disk memory are scarce commodities. Here we show that Grid Computing in combination with OGC Web Services (OWS) is well suited to accomplish high processing performance and storage capacity for large-scale processing tasks of the geo community. To process these massive amounts of geo-data we develop terrain processing services which are made available as grid services. Our results will be demonstrating how to bridge the gap between the grid world and the OGC world for more sophisticated terrain processing.  相似文献   
996.
Oxygen and carbon stable isotope ratios in carbonates from the HDP-04 drill core from Lake Hovsgol, NW Mongolia, show an overall covariant relationship suggesting that for the most of the past 1 Ma Hovsgol remained a closed-basin lake. Carbonate δ18O ratio is responsive to regional climate change: a ca. +1.5‰ basinwide δ18O shift has occurred with the onset of Bølling–Allerød warming (sensu lato), followed by a ca. 0.8‰ depletion during the Younger Dryas. The post-glacial δ18O shift of the same magnitude is recorded in bulk carbonates, shells of two ostracod species and in wet-sieved fine fraction <63 μm. Associated with the lake-level rise and correlative with the post-glacial warming in the northern hemisphere, the observed δ18O shift is nevertheless positive. This argues against changes in local temperature and hydrology as key driving mechanisms. Most likely, Lake Hovsgol δ18O reflects a climate-driven shift in the composition of regional precipitation. Tied into a distinct lithologic succession, the radiocarbon-dated late glacial δ18O shift apparently represents a ‘template’ of the lake's response to glacial–interglacial transitions: a similar pattern of parallel changes in lithology and carbonate stable isotope composition is observed in at least 10 more intervals in the 1-Ma record, including the MIS 20/MIS19 transition at the Brunhes/Matuyama paleomagnetic reversal boundary. The comparison of carbon stable isotope ratios of untreated and in vacuo roasted bulk sediment with those of detrital carbonates suggests that clastic input of carbonates by lake tributaries does not affect the geochemistry of bulk carbonates in the HDP-04 section. The profiles of bulk carbonate δ18O and δ13C in the Pleistocene section of the HDP-04 drill core suggest at ca. 15.4 ka, at ca. 100 m below today's level, Lake Hovsgol still stood relatively high as compared with prior extended periods of time during late Matuyama and early Brunhes. Isotopically heavy δ18O and δ13C ratios during the mid–late Brunhes, particularly, in carbonate crusts and oolites, are suggestive of past episodes of dramatic evaporative 18O-enrichment of lake waters. Despite the expectation of muted amplitudes of temperature- and precipitation-related isotope signals, the sedimentary record from the sensitive ‘water gauge’ basin of Lake Hovsgol has high potential for providing important constraints on past hydrologic evolution of continental interior Asia during the Pleistocene.  相似文献   
997.
Study of the upper loess strata within the profile of surface soils highlighted the role of pedogenesis in the formation of characteristic features of loess. Loess-paleosol sequences within the study area are influenced by their position in paleocryogenic microrelief. Clear evidence of sequential loess sedimentation, accompanied by slope processes and pedogenesis, is present in soil profiles within former thermokarst depressions. Different stages of loess sedimentation are marked by cryomorphic features, solifluction stripes and buried humus horizons. The balance between the rate of sedimentation, intensity of slope processes and pedogenesis changed within the upper 3 m of loess strata. Corresponding loess strata in inter-depression areas were also formed by sequential accumulation of aeolian dust, gradually altered by initial pedogenesis that left weakly developed soil profiles without clear horizonation. Pedogenesis resulted in diverse complexes of secondary carbonates, loose soil fabric and microfabric with abundant pores of biogenic and cryogenic nature, as well as other features, characteristic of soils of cold arid environments. The uniformity of these features throughout the upper loess strata confirms the synlithogenic nature of pedogenesis that accompanied loess accumulation.  相似文献   
998.
Early Palaeoproterozoic rocks from the Onega Basin in Russian Fennoscandia contain evidence for substantial accumulation and preservation of organic matter (up to 75 wt% total organic carbon) with an estimated original petroleum potential comparable to a modern supergiant oilfield. The basin contains a uniquely preserved petrified oilfield including evidence of oil traps and oil migration pathways. Here, we report the discovery of the surface expression of a migration pathway, along which petroleum was flowing from the sub-surface. This surface oil seep, the first occurrence ever reported from the Palaeoproterozoic, appears as original bitumen clasts redeposited in Palaeoproterozoic lacustrine turbidites. The δ13Corg of clastic pyrobitumen ranges between −35.4 and −36.0‰ ( n  = 14), which is within the range of interbed- and vein-trapped fossil oil (−46 and −24‰), suggesting similar source. Biogenic organic matter, whose isotopic composition was modified during thermal maturation, is the likely source for the migrated hydrocarbon.  相似文献   
999.
Shock-induced melt veins in amphibolites from the Nördlinger Ries often have chemical compositions that are similar to bulk rock (i.e., basaltic), but there are other veins that are confined to chlorite-rich cracks that formed before the impact and these are poor in Ca and Na. Majoritic garnets within the shock veins show a broad chemical variation between three endmembers: (1) \({}^{\text{VIII}}{{\text{M}^{2+}}_3} {}^{\text{VI}}{\text{Al}}_{2} ({}^{\text{IV}}{\text{SiO}}_{4} )_{3}\) (normal garnet, Grt), (2) \({}^{\text{VIII}}{{\text{M}^{2+}}_3} {}^{\text{VI}}[{\text{M}}^{2 + } ({\text{Si,Ti}})]({}^{\text{IV}}{\text{SiO}}_{4} )_{3}\)  (majorite, Maj), and (3) \({}^{\text{VIII}}({{\text {Na} {\text M}^{2+}}_2}) {}^{\text{VI}}[ ({\text{Si,Ti}}){\text {Al}}]({}^{\text{IV}}{\text{SiO}}_{4} )_{3}\) (Na-majorite50Grt50), whereby M2+ = Mg2+, Fe2+, Mn2+, Ca2+. In particular, we observed a broad variation in VI(Si,Ti) which ranges from 0.12 to 0.58 cations per formula unit (cpfu). All these majoritic garnets crystallized during shock pressure release at different ultrahigh pressures. Those with high VI(Si,Ti) (0.36–0.58 cpfu) formed at high pressures and temperatures from amphibole-rich melts, while majoritic garnets with lower VI(Si,Ti) of 0.12–0.27 cpfu formed at lower pressures and temperatures from chlorite-rich melts. Furthermore, majoritic garnets with intermediate values of VI(Si,Ti) (0.24–0.39) crystallized from melts with intermediate contents of Ca and Na. To the best of our knowledge the ‘MORB-type’ Ca–Na-rich majoritic garnets with maximum contents of 2.99 wt% Na2O and calculated crystallisation pressures of 16–18 GPa are the most extreme representatives ever found in terrestrial shocked materials. At the Ries, the duration of the initial contact and compression stage at the central location of impact is estimated to only ~ 0.1 s. We used a ~ 200-µm-thick shock-induced vein in a moderately shocked amphibolite to model its pressure–temperature–time (PTt) path. The graphic model manifests a peak temperature of ~ 2600 °C for the vein, continuum pressure lasting for ~ 0.02 s, a quench duration of ~ 0.02 s and a shock pulse of ~ 0.038 s. The small difference between the continuum pressure and the pressure of majoritic garnet crystallization underlines the usefulness of applying crystallisation pressures of majoritic garnets from metabasites for calculation of dynamic shock pressures of host rocks. Majoritic garnets of chlorite provenance, however, are not suitable for the determination of continuum pressure since they crystallized relatively late during shock release. An extraordinary glass- and majorite-bearing amphibole fragment in a shock-vein of one amphibolite documents the whole unloading path.  相似文献   
1000.
The extreme depletion of the Earth’s mantle in sulfur is commonly seen as a signature of metal segregation from Earth’s mantle to Earth’s core. However, in addition to S, the mantle contains other elements as volatile as S that are hardly depleted relative to the lithophile volatility trend although they are potentially as siderophile as sulfur. We report experiments in metal-sulfide–silicate systems to show that the CI normalized abundances of S, Pb, and Sn in Earth’s mantle cannot be reproduced by element partitioning in Fe ± S–silicate systems, neither at low nor at high pressure. Much of the volatile inventory of the Earth’s mantle must have been added late in the accretion history, when metal melt segregation to the core had become largely inactive. The great depletion in S is attributed to the selective segregation of a late sulfide matte from an oxidized and largely crystalline mantle. Apparently, the volatile abundances of Earth’s mantle are not in redox equilibrium with Earth’s core.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号