首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24561篇
  免费   185篇
  国内免费   918篇
测绘学   1416篇
大气科学   1998篇
地球物理   4542篇
地质学   11663篇
海洋学   1025篇
天文学   1637篇
综合类   2161篇
自然地理   1222篇
  2022年   1篇
  2021年   7篇
  2020年   5篇
  2019年   7篇
  2018年   4769篇
  2017年   4042篇
  2016年   2582篇
  2015年   241篇
  2014年   90篇
  2013年   36篇
  2012年   997篇
  2011年   2739篇
  2010年   2023篇
  2009年   2321篇
  2008年   1899篇
  2007年   2370篇
  2006年   59篇
  2005年   202篇
  2004年   408篇
  2003年   412篇
  2002年   253篇
  2001年   55篇
  2000年   52篇
  1999年   13篇
  1998年   24篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1989年   3篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1981年   22篇
  1980年   19篇
  1976年   6篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
751.
Sonrai basin, located along the southwestern margin of Bundelkhand Granite-Gneiss Complex (BGC) is known for its base metal and phosphorite mineralization. Uranium mineralization of appreciable grade and thickness was reported in Pisnari block in the northern part of this basin during sub-surface exploration activity in 1976-97. This was in the form of uranium-bitumin association within fractures in the carbonate-terrigenous sediments of Gorakalan shale, Rohini carbonate and Bandai sandstone of Sonrai Formation of Bijawar Group. Similar mineralization was also noted within the lower chloritic shale member of Solda Formation of the same Group. During subsequent drilling activity at a later phase (2005-09), uranium rich zones within Rohini carbonate and chloritic shale members were corroborated by the interception of mineralized bands in two boreholes drilled near Pisnari. Petrographic study of radioactive core samples reveal that uranium mineralization is closely associated with globular carbonaceous matter and sulphides along the fractures. Uranium is either adsorbed in carbonaceous matter or occurs as ultrafine inclusions of coffinite within carbonaceous matter. An additional phase of secondary uranium mineral (uranophane) is also noted in one of the boreholes. The uranium minerals, in association with sulphides, fill up moderately dipping fractures (approximately 15o towards North) which are oblique to the core axis of the inclined borehole and thus, the mineralization is characterized as hydrothermal fracture-controlled vein type mineralisation. C-HN- S analysis of carbonaceous matter occurring in close association with the uranium minerals reveal heterogeneity in composition with respect to carbon and sulfur. The present paper aims at discussing the geological, petrological and radiometric aspects of this mineralization, so as to enhance the understanding of the same.  相似文献   
752.
In this study we present a fresh isotopic data, as well as U–Pb ages from different REE-minerals in carbonatites and phoscorites of Guli massif using in situ LA-ICPMS technique. The analyses were conducted on apatites and perovskites from calcio-carbonatite and phoscorite units, as well as on pyrochlores and baddeleyites from the carbonatites. The 87Sr/86Sr ratios obtained from apatites and perovskites from the phoscorites are 0.70308–0.70314 and 0.70306–0.70313, respectively; and 0.70310–0.70325 and 0.70314–0.70327, for the pyrochlores and apatites from the carbonatites, respectively.Furthermore, the in situ laser ablation analyses of apatites and perovskites from the phoscorite yield εNd from 3.6 (±1) to 5.1 (±0.5) and from 3.8 (±0.5) to 4.9 (±0.5), respectively; εNd of apatites, perovskites and pyrochlores from carbonatite ranges from 3.2 (±0.7) to 4.9 (±0.9), 3.9 (±0.6) to 4.5 (±0.8) and 3.2 (±0.4) to 4.4 (±0.8), respectively. Laser ablation analyses of baddeleyites yielded an eHf(t)d of +8.5 (± 0.18); prior to this study Hf isotopic characteristic of Guli massif was not known. Our new in situ εNd, 87Sr/86Sr and eHf data on minerals in the Guli carbonatites imply a depleted source with a long time integrated high Lu/Hf, Sm/Nd, Sr/Rb ratios.In situ U–Pb age determination was performed on perovskites from the carbonatites and phoscorites and also on pyrochlores and baddeleyites from carbonatites. The co-existing pyrochlores, perovskites and baddeleyites in carbonatites yielded ages of 252.3 ± 1.9, 252.5 ± 1.5 and 250.8 ± 1.4 Ma, respectively. The perovskites from the phoscorites yielded an age of 253.8 ± 1.9 Ma. The obtained age for Guli carbonatites and phoscorites lies within the range of ages previously reported for the Siberian Flood Basalts and suggest essentially synchronous emplacement with the Permian-Triassic boundary.  相似文献   
753.
The project area lies in the southern part of the Hazara Kashmir syntaxis. The Hazara Kashmir syntaxis is an antiformal structure. The project area includes Rumbli, Namb, Chatrora, Chachan, Panjar, Barathian and Utrinna areas of Rawalpindi and Sudhnoti districts. The southeastern limb of the Hazara Kashmir syntaxis is imbricated along Punjal thrust, Main Boundary thrust and Riasi fault. The Jhelum fault truncates the western limb of Hazara Kashmir syntaxis. The core of syntaxis comprises of Himalayan molasse deposits. These molasse deposits represent the part of cover sequence of Indian plate. These Himalayan molasse deposits include the Early to Middle Miocene Kamlial Formation, Middle to Late Miocene Chinji Formation, Late Miocene Nagri Formation and Late Miocene Dhok Pathan Formation. The area is highly deformed resulting folds and faults. The major folds in the project area are the Panjar anticline, Barathian syncline, Barathian anticline, Rumbli anticline, Chatrora antiformal syncline and Namb syncline. The folds are either northwest-southeast trending or southwestnortheast trending. The folds are asymmetric, open, and gentle and close in nature. The folds are southwest, northeast or southeast vergent. The Jhelum fault truncates the northeast and northwest trending structures. The folds and faults are the result of northeastsouthwest or northwest-southeast Himalayan compression.  相似文献   
754.
755.
756.
757.
In this review, the shifts in organic matter (OM) accumulation and C:N ratios in lake sediments to reconstruct paleoclimate and paleo-environmental changes since the early Holocene period are presented. The C:N proxy data of total OM reflect wet climatic conditions during early Holocene (10 to 8.2 kyrs BP) due to enhanced southwest monsoon. This was followed by intermittent arid conditions during the mid and late Holocene period (8.2 to 2.8 kyr BP). Enhanced values of C:N ratio during middle to late Holocene (7.8–2.3 kyrs B.P) indicate periods with lower lake levels and minimum precipitation, while decreased C:N ratio point to stronger SW monsoon and expansion of the lakes. Further, C:N and δ13C results from the lake sediments reveal a detailed and continuous paleo-environmental changes in the relative sources of OM (allochthonous vs autochthonous). Proxy records using such natural archives have also been utilized to reconstruct past extreme events and environmental changes around the lake systems, such as causes for lake desiccation, hydrographic changes, alternations between C3 and C4 vegetation and historical disturbances in the catchment area since the early-late Holocene period coupled with the Indian summer monsoon.  相似文献   
758.
759.
Characterization of the Panandhro lignite deposits from western Indian state of Gujarat, based on the geochemical and palynological evidences, has been performed to assess the floral composition, maturity and hydrocarbon potential of the sequence. Elementally, the lignites consist of moderate carbon, low hydrogen and moderate sulfur contents. The samples are characterized by high TOC contents (lignite: av. 46.43 wt.%, resin: 62.47 wt.%). The average HI values for the lignite is 136 mg HC/g TOC, and that of the associated resin is 671 mg HC/g TOC. The highest Tmax is recoded in lignite (422°C) and lowest in the resin (39°C) samples. The FTIR spectrum of lignite is characterized by highly intense OH stretching peak ~3350 cm-1, aliphatic CHx stretching peaks between 3000-2800 cm-1, aromatic C=O stretching and an aromatic C=C stretching. The spectrum of resin shows strongest absorption due to aliphatic CHx stretching between 2940-2915 cm-1 and 2870-2850 cm-1, and deformation by the medium peak between 1450 and 1650 cm-1. The recovered palynofloral assemblage indicates the dominance of angiosperm pollen grains with maximum abundance of Arecaceae family, and subdominant pteridophytic spores. Marine influence is indicated by the presence of abundant dinoflagellate cysts. The occurrence of flora from a variety of ecological niches suggests a luxuriant diverse vegetation pattern existed in the vicinity of depositional site under humid tropical conditions. The overall characteristics of the lignite deposits point towards their ability to generate (upon maturation) hydrocarbons as they have types III–II admixed kerogen (organic matters).  相似文献   
760.
Geo-environmental studies in parts of Ernakulam district (Kerala, India) were carried out. The study area comprises of sedimentary (Limestone, sandstone, Clay and Lignite) and crystalline (Charnockite and gneisses) rocks. The sedimentary terrain is characterized by confined and unconfined aquifers. In hard crystalline formations groundwater occurs under phreatic conditions in the shallow weathered portions and under semi confined to confined conditions in the deep-seated fractures. The study area is demarcated into five areas based on soil types. Climate is hot humid to hot summer with heavily raining monsoon. Two major rivers Periyar and Muvattupuzha drain through the area. Agricultural and industrial activities are prevalent in Ernakulam district. The major cause of pollution in the study area is due to the presence of coliforms. Detailed investigations carried out to identify the coliforms indicated spatial and seasonal changes in the distribution pattern. Monsoon and post monsoon showed significantly high total coliforms compared to pre-monsoon. Thermo-tolerant coliforms is high during monsoon season. This seasonal change could be due to the effect of rainfall, overland flow, nutrient load and temperature change. Wide variations in the coliform counts are observed in wells situated near rivers, canals, paddy fields and in water bodies lying close to pilgrimage center, fertilizer industry, and public places. It is noticed that the chemical characteristics of the groundwater influence the coliform survival. pH, nitrite, bicarbonate, hardness, and alkalinity play a significant role in controlling coliform count. At the outset, the study highlighted the impact of anthropogenic activities on ground water in a coastal district of Kerala state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号