首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   0篇
测绘学   1篇
地球物理   45篇
地质学   20篇
海洋学   2篇
天文学   1篇
自然地理   9篇
  2019年   1篇
  2018年   1篇
  2016年   4篇
  2015年   1篇
  2013年   1篇
  2011年   2篇
  2010年   2篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   5篇
  1997年   2篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   6篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
31.
The present study focuses on the P and S crustal and uppermost mantle velocity structure in the broader Kozani-Grevena area. The velocity structure is derived from the inversion of travel times of local events. The main data source is the travel times from the aftershock sequence of the large event of 13 of May 1995 (Mw = 6.6) which occurred in the study area. An appropriate preconditioning of the final linearized system is used to reduce ray density effects on the results. An attempt is made to interpret the features and details of the crustal structure in terms of the geotectonic setting of the area. The observed features of the deeper crustal and uppermost mantle structure are in very good agreement with previous results. Specifically, a crustal thickening is observed along a ENE-WSW direction, perpendicular to the well-known Dinaric trend (NNW-SSE) of the geological formations of the area, in accordance with the theoretical expectation of a thicker crust under the accretion prism which starts at the SW edge of the study area.  相似文献   
32.
The Kozani-Grevena (Greece) destructive earthquake occurred in a region of low seismicity. A considerable amount of strong-motion data was acquired from the permanent strong motion network of the Institute of Engineering Scismology and Earthquake Engineering (ITSAK) as well as from a temporary one installed after the earthquake. On the basis of this data set as well as on the observed macroseismic intensities, local attenuation relations for peak ground acceleration and velocity are proposed. A posteriori seismic hazard analysis is attempted for the affected and surrounding areas in terms of peak ground acceleration, velocity, bracketed duration and spectral acceleration. The analysis shows that the event of May 13, 1995 can be characterized as one with a mean return period of 500 to 1000 years. Relying on the observed spectral-acceleration amplification factors and the expected peak ground acceleration for mean return period of 500 years, region-specific elastic design spectra for the buildings of the Kozani and Grevena prefectures are proposed.  相似文献   
33.
Historical and present century instrumental data have been used to determine seismic hazard in 35 sites of Greece by the application of Cornell's method (Cornell, 1968) and the mean value method. The macroseismic intensity has been considered as a measure of seismic hazard. Comparison of the results of the two methods showed that, in general, the mean value method gives higher values, particularly for low probabilities of exceedance. In addition, for some sites, the differences of the expected intensities resulting from the two methods, indicate that finer tuning of the seismogenic souce model is required, or suggest time dependence. Although each one of these methods has its own merits, the method based on seismic zonation (Cornell's method) has several advantages and must be preferred when an accurate zonation is possible by the use of macroseismic and instrumental seismic data, together with geological and geomorphological information. However, reliable estimates of seismic hazard at a particular site require work on a microzoning scale, incorporating historical, archaeological, and recent geological data.Paper presented at the 21st General Assembly of the European Seismological Commission held in Sofia, 1988.  相似文献   
34.
The relatively wide KwaZulu-Natal Bight between St Lucia and Durban on the north-east shelf of South Africa is characterised by several circulation features driven by the Agulhas Current, wind and coastal inputs. A large multidisciplinary programme investigated the sources and relative influences of nutrients on the shelf. Within this, and to address a critical knowledge gap, this study describes macrobenthic (<1 mm) composition and frequency from 16 stations, assigned amongst four oceanographic focus areas. The areas were predetermined across the disciplines to represent upwelling, outwelling and a semi-persistent eddy, with nutrients and primary productivity being measured at each. Environmental variables such as sediment distribution, sediment TOC and bottom water physico-chemistry were determined at a significantly larger spatial scale. Our study postulated that oceanographic focus areas support significantly different macrobenthic assemblages, and that composition and relative distribution is due to measurable habitat attributes at each. Macrofauna were relatively abundant and particularly rich at >1 000 taxa. Annelida, Arthropoda, Mollusca, Echinodermata, Sipuncula and Cnidaria (>50 taxa each) were the dominant macrobenthic groups in the bight. Annelida were dominated by the polychaete families Spionidae, Terrebelidae and Cirratullidae, which were generally associated with outwelling and a mud depocentre off the Thukela River. Two unique and distinctive assemblages were found, one in the Thukela Mouth focus area and another on the midshelf between Thukela and Durban. The latter is influenced by poorly sorted, coarse sand and with probable influences from the Durban Eddy. There assemblages were abundant, rich and specific to this habitat. Correlation, PERMANOVA and CAP analyses showed assemblage fidelity to the focus areas. Medium sand, fine sand, mud and the variance of overall sediment type were the habitat drivers underlying macrofaunal abundance distributions.  相似文献   
35.
Almost all earth sciences inverse problems are nonlinear and involve a large number of unknown parameters, making the application of analytical inversion methods quite restrictive. In practice, most analytical methods are local in nature and rely on a linearized form of the problem equations, adopting an iterative procedure which typically employs partial derivatives in order to optimize the starting (initial) model by minimizing a misfit (penalty) function. Unfortunately, especially for highly non-linear cases, the final model strongly depends on the initial model, hence it is prone to solution-entrapment in local minima of the misfit function, while the derivative calculation is often computationally inefficient and creates instabilities when numerical approximations are used. An alternative is to employ global techniques which do not rely on partial derivatives, are independent of the misfit form and are computationally robust. Such methods employ pseudo-randomly generated models (sampling an appropriately selected section of the model space) which are assessed in terms of their data-fit. A typical example is the class of methods known as genetic algorithms (GA), which achieves the aforementioned approximation through model representation and manipulations, and has attracted the attention of the earth sciences community during the last decade, with several applications already presented for several geophysical problems.In this paper, we examine the efficiency of the combination of the typical regularized least-squares and genetic methods for a typical seismic tomography problem. The proposed approach combines a local (LOM) and a global (GOM) optimization method, in an attempt to overcome the limitations of each individual approach, such as local minima and slow convergence, respectively. The potential of both optimization methods is tested and compared, both independently and jointly, using the several test models and synthetic refraction travel-time date sets that employ the same experimental geometry, wavelength and geometrical characteristics of the model anomalies. Moreover, real data from a crosswell tomographic project for the subsurface mapping of an ancient wall foundation are used for testing the efficiency of the proposed algorithm. The results show that the combined use of both methods can exploit the benefits of each approach, leading to improved final models and producing realistic velocity models, without significantly increasing the required computation time.  相似文献   
36.
We examined the seismic activity which preceded six strong mainshocks that occurred in the Aegean (M?=?6.4–6.9, 33–43° N, 19–28° E) and two strong mainshocks that occurred in California (M?=?6.5–7.1, 32–41° N, 115–125° W) during 1995–2010. We find that each of these eight mainshocks has been preceded by a pronounced decelerating and an equally easily identifiable accelerating seismic sequence with the time to the mainshock. The two preshock sequences of each mainshock occurred in separate space, time, and magnitude windows. In all eight cases, very low decelerating seismicity, as well as very low accelerating seismicity, is observed around the actual epicenter of the ensuing mainshock. Statistical tests on the observed measures of decelerating, q d, and accelerating, q a, seismicity against similar measures calculated using synthetic catalogs with spatiotemporal clustering based on the ETAS model show that there is an almost zero probability for each one of the two preshock sequences which preceded each of the eight mainshocks to be random. These results support the notion that every strong shallow mainshock is preceded by a decelerating and an accelerating seismic sequence with predictive properties for the ensuing mainshock.  相似文献   
37.
Decelerating generation of preshocks in a narrow (seismogenic) region and accelerating generation of other preshocks in a broader (critical) region, called decelerating–accelerating seismic strain (D-AS) model has been proposed as appropriate for intermediate-term earthquake prediction. An attempt is made in the present work to identify such seismic strain patterns and estimate the corresponding probably ensuing large mainshocks (M ≥ 7.0) in south Japan (30–38° N, 130–138° E). Two such patterns have been identified and the origin time, magnitude, and epicenter coordinates for each of the two corresponding probably ensuing mainshocks have been estimated. Model uncertainties of predicted quantities are also given to allow an objective forward testing of the efficiency of the model for intermediate-term earthquake prediction.  相似文献   
38.
39.
—?Source parameters for thirteen earthquakes in the SE Adriatic region have been determined using P and SH body-waveform inversion. The results of this modeling are combined with eleven other earthquakes with M?≥?5 whose focal mechanisms have been determined mainly by waveform modeling. The results confirm that movement on mainly low-angle reverse faults causes the deformation in coastal southern Yugoslavia through Albania up to the Lefkada Island in NW Greece. This zone of thrusting has a NW–SE trend (N34°W), follows the coastline, and dips towards the continent. The slip vectors of these events trend at ~N229° along the Dalmatian coasts, to ~N247° along Albania and NW Greece. The deformation is attributed to the continental collision between the Adriatic block to the west and Eurasia to the east. Along the mountain line in eastern Albania (Albanides Mts.) and in NW Greece (Hellenides Mts.), E–W extension is occurring. The E–W extension associated with the orogenic belt could be attributed to a variety of models such as: gravity, internal deformation of the thrust wedge, a probable down bulge of the dense lithosphere of the Adriatic block beneath the Eurasian lithospheric plate in combination with the compressional stresses applied along the collision belt.  相似文献   
40.
According to previous observations [Geophys. Res. Lett. 27 (2000) 3957], the generation of large (M≥7.0) earthquakes in the western part of the north Anatolian fault system (Marmara Sea) is followed by strong earthquakes along the Northern Boundary of the Aegean microplate (NAB: northwestermost Anatolia–northern Aegean–central Greece–Ionian islands). Therefore, it can be hypothesized that a seismic excitation along this boundary should be expected after the occurrence of the Izmit 1999 earthquake (M=7.6). We have applied the method of accelerating seismic crustal deformation, which is based on concepts of critical point dynamics in an attempt to locate more precisely those regions along the NAB where seismic excitation is more likely to occur. For this reason, a detailed parametric grid search of the broader NAB area was performed for the identification of accelerating energy release behavior.Three such elliptical critical regions have been identified with centers along this boundary. The first region, (A), is centered in the eastern part of this boundary (40.2°N, 27.2°E: southwest of Marmara), the second region, (B), has a center in the middle part of the boundary (38.8°N, 23.4°E: East Central Greece) and the third region, (C), in the westernmost part of the boundary (38.2°N, 20.9°E: Ionian Islands). The study of the time variation of the cumulative Benioff strain in two of the three identified regions (A and B) revealed that intense accelerating seismicity is observed especially after the occurrence of the 1999 Izmit mainshock. Therefore, it can be suggested that the seismic excitation, at least in these two regions, has been triggered by the Izmit mainshock.Estimations of the magnitudes and origin times of the expected mainshocks in these three critical regions have also been performed, assuming that the accelerating seismicity in these regions will lead to a critical point, that is, to the generation of mainshocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号