首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58877篇
  免费   895篇
  国内免费   846篇
测绘学   1602篇
大气科学   4555篇
地球物理   11692篇
地质学   20012篇
海洋学   5362篇
天文学   13685篇
综合类   169篇
自然地理   3541篇
  2021年   384篇
  2020年   479篇
  2019年   550篇
  2018年   1151篇
  2017年   1081篇
  2016年   1535篇
  2015年   960篇
  2014年   1462篇
  2013年   3038篇
  2012年   1697篇
  2011年   2344篇
  2010年   2013篇
  2009年   2822篇
  2008年   2505篇
  2007年   2437篇
  2006年   2357篇
  2005年   1964篇
  2004年   1880篇
  2003年   1800篇
  2002年   1695篇
  2001年   1493篇
  2000年   1518篇
  1999年   1366篇
  1998年   1307篇
  1997年   1263篇
  1996年   1065篇
  1995年   981篇
  1994年   916篇
  1993年   784篇
  1992年   776篇
  1991年   712篇
  1990年   755篇
  1989年   662篇
  1988年   625篇
  1987年   702篇
  1986年   651篇
  1985年   799篇
  1984年   871篇
  1983年   844篇
  1982年   806篇
  1981年   690篇
  1980年   678篇
  1979年   598篇
  1978年   586篇
  1977年   555篇
  1976年   482篇
  1975年   502篇
  1974年   490篇
  1973年   488篇
  1972年   312篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
381.
We propose a methodology for local gravity field modelling from gravity data using spherical radial basis functions. The methodology comprises two steps: in step 1, gravity data (gravity anomalies and/or gravity disturbances) are used to estimate the disturbing potential using least-squares techniques. The latter is represented as a linear combination of spherical radial basis functions (SRBFs). A data-adaptive strategy is used to select the optimal number, location, and depths of the SRBFs using generalized cross validation. Variance component estimation is used to determine the optimal regularization parameter and to properly weight the different data sets. In the second step, the gravimetric height anomalies are combined with observed differences between global positioning system (GPS) ellipsoidal heights and normal heights. The data combination is written as the solution of a Cauchy boundary-value problem for the Laplace equation. This allows removal of the non-uniqueness of the problem of local gravity field modelling from terrestrial gravity data. At the same time, existing systematic distortions in the gravimetric and geometric height anomalies are also absorbed into the combination. The approach is used to compute a height reference surface for the Netherlands. The solution is compared with NLGEO2004, the official Dutch height reference surface, which has been computed using the same data but a Stokes-based approach with kernel modification and a geometric six-parameter “corrector surface” to fit the gravimetric solution to the GPS-levelling points. A direct comparison of both height reference surfaces shows an RMS difference of 0.6 cm; the maximum difference is 2.1 cm. A test at independent GPS-levelling control points, confirms that our solution is in no way inferior to NLGEO2004.  相似文献   
382.
383.
Moderate Resolution Imaging Spectroradiometer (MODIS) 16-day 1-km vegetation index products, daily temperature, photosynthetically active radiation (PAR), and precipitation from 2001 to 2004 were utilized to analyze the temporal variations of the MODIS normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI), as well as their correlations with climate over the evergreen forested sites in Zhejiang-a humid subtropical region in the southeast of China. The results showed that both NDVI and EVI could discern the seasonal variation of the evergreen forests. Attributed to the sufficient precipitation in the study area, the growth of vegetation is mainly controlled by energy; as a result, NDVI, and especially EVI, is more correlated with temperature and PAR than precipitation. Compared with NDVI, EVI is more sensitive to climate condition and is a better indicator to study vegetation variations in the study region  相似文献   
384.
With multisatellite radar systems, several additional features are achieved: multistatic observation, interferometry, ground moving target indication (GMTI). In this letter, a new reduced-dimensional method based on joint pixels sum-difference (Sigma-Delta) data for clutter rejection and GMTI is proposed. The reduced-dimensional joint pixels Sigma-Delta data are obtained by the orthogonal projection of the joint pixels data of different synthetic aperture radar (SAR) images generated by a multisatellite radar system. In the sense of statistic expectation, the joint pixels Sigma-Delta data contain the common and different information among SAR images. Then, the objective of clutter cancellation and GMTI can be achieved by adaptive processing. Simulation results demonstrate the effectiveness and robustness of the proposed method even with clutter fluctuation and image coregistration errors  相似文献   
385.
Synthetic aperture radar (SAR) image formation processing assumes that the scene is stationary, and to focus an object, one coherently sums a large number of independent returns. Any target motion introduces phases that distort and/or translate the target's image. Target motion produces a smear primarily in the azimuth direction of the SAR image. Time-frequency (TF) modeling is used to analyze and correct the residual phase distortions. An interactive focusing algorithm based on TF modeling demonstrates how to correct the phase and to rapidly focus the mover. This is demonstrated on two watercraft observed in a SAR image. Then, two time-frequency representations (TFRs) are applied to estimate the motion parameters of the movers or refocus them or both. The first is the short-time Fourier transform, from which a velocity profile is constructed based on the length of the smear. The second TFR is the time-frequency distribution series, which is a robust derivative of the Wigner-Ville distribution that works well in this SAR environment. The smear is a modulated chirp, from which a velocity profile is plotted and the phase corrections are integrated to focus the movers. The relationship between these two methods is discussed. Both methods show good agreement on the example.  相似文献   
386.
When neglecting calibration issues, the accuracy of GPS-based time and frequency transfer using a combined analysis of code and carrier phase measurements highly depends on the noise of the GPS codes. In particular, the pseudorange noise is responsible for day-boundary discontinuities which can reach more than 1 ns in the time transfer results obtained from geodetic analysis. These discontinuities are caused by the fact that the data are analyzed in daily data batches where the absolute clock offset is determined by the mean code value during the daily data batch. This pseudorange noise is not a white noise, in particular due to multipath and variations of instrumental delays. In this paper, the pseudorange noise behavior is characterized in order to improve the understanding of the origin of the large day-boundary discontinuities in the geodetic time transfer results. In a first step, the effect of short-term noise and multipath is estimated, and shown to be responsible for only a maximum of 150 ps (picoseconds) of the day-boundary jumps, with only one exception at NRC1 where the correction provides a jump reduction of 300 ps. In a second step, a combination of time transfer results obtained with pseudoranges only and geodetic time transfer results is used to characterize the long-term evolution of pseudorange errors. It demonstrates that the day-boundary jumps, especially those of large amplitude, can be explained by an instrumental effect imposing a common behavior on all the satellite pseudoranges. Using known influences as temperature variations at ALGO or cable damages at HOB2, it is shown that the approach developed in this study can be used to look for the origin of the day-boundary discontinuities in other stations.  相似文献   
387.
This research explored the integrated use of Landsat Thematic Mapper (TM) and radar (i.e., ALOS PALSAR L-band and RADARSAT-2 C-band) data for mapping impervious surface distribution to examine the roles of radar data with different spatial resolutions and wavelengths. The wavelet-merging technique was used to merge TM and radar data to generate a new dataset. A constrained least-squares solution was used to unmix TM multispectral data and multisensor fusion images to four fraction images (high-albedo, low-albedo, vegetation, and soil). The impervious surface image was then extracted from the high-albedo and low-albedo fraction images. QuickBird imagery was used to develop an impervious surface image for use as reference data to evaluate the results from TM and fusion images. This research indicated that increasing spatial resolution by multisensor fusion improved spatial patterns of impervious surface distribution, but cannot significantly improve the statistical area accuracy. This research also indicated that the fusion image with 10-m spatial resolution was suitable for mapping impervious surface spatial distribution, but TM multispectral image with 30 m was too coarse in a complex urban–rural landscape. On the other hand, this research showed that no significant difference in improving impervious surface mapping performance by using either PALSAR L-band or RADARSAT C-band data with the same spatial resolution when they were used for multi-sensor fusion with the wavelet-based method.  相似文献   
388.
Tomographic 4D reconstructions of ionospheric anomalies appearing in the high-latitude polar cap region are compared with plasma density measurements by digital ionosonde located near the north magnetic pole at Eureka station and with in situ plasma measurements on-board DMSP spacecraft. The moderate magnetic storm of 14–17 October 2002 is taken as an example of a geomagnetic disturbance which generates large-scale ionospheric plasma anomalies at mid-latitudes and in the polar cap region. Comparison of the GPS tomographic reconstructions over Eureka station with the ionosonde measurements of the F layer peak densities indicates that the GPS tomography correctly predicts the time of arrival and passage of the ionospheric tongue of ionization over the magnetic pole area, although the tomographic technique appears to under-estimate the value of F peak plasma density. Comparison with the in situ plasma measurements by the DMSP SSIES instruments shows that the GPS tomography correctly reproduces the large-scale spatial structure of ionospheric anomalies over a wide range of latitudes from mid-latitudes to the high-latitude polar cap region, though the tomographic reconstructions tend to over-estimate the density of the topside ionosphere at 840 km DMSP orbit. This study is essential for understanding the quality and limitations of the tomographic reconstruction techniques, particularly in high-latitude regions where GPS TEC measurements and other ionospheric data sources are limited.  相似文献   
389.
Recently, four global geopotential models (GGMs) were computed and released based on the first 2 months of data collected by the Gravity field and steady-state Ocean Circulation Explorer (GOCE) dedicated satellite gravity field mission. Given that GOCE is a technologically complex mission and different processing strategies were applied to real space-collected GOCE data for the first time, evaluation of the new models is an important aspect. As a first assessment strategy, we use terrestrial gravity data over Switzerland and Australia and astrogeodetic vertical deflections over Europe and Australia as ground-truth data sets for GOCE model evaluation. We apply a spectral enhancement method (SEM) to the truncated GOCE GGMs to make their spectral content more comparable with the terrestrial data. The SEM utilises the high-degree bands of EGM2008 and residual terrain model data as a data source to widely bridge the spectral gap between the satellite and terrestrial data. Analysis of root mean square (RMS) errors is carried out as a function of (i) the GOCE GGM expansion degree and (ii) the four different GOCE GGMs. The RMS curves are also compared against those from EGM2008 and GRACE-based GGMs. As a second assessment strategy, we compare global grids of GOCE GGM and EGM2008 quasigeoid heights. In connection with EGM2008 error estimates, this allows location of regions where GOCE is likely to deliver improved knowledge on the Earth’s gravity field. Our ground truth data sets, together with the EGM2008 quasigeoid comparisons, signal clear improvements in the spectral band ~160–165 to ~180–185 in terms of spherical harmonic degrees for the GOCE-based GGMs, fairly independently of the individual GOCE model used. The results from both assessments together provide strong evidence that the first 2 months of GOCE observations improve the knowledge of the Earth’s static gravity field at spatial scales between ~125 and ~110 km, particularly over parts of Asia, Africa, South America and Antarctica, in comparison with the pre-GOCE-era.  相似文献   
390.
Cropping system study is not only useful to understand the overall sustainability of agricultural system, but also it helps in generating many important parameters which are useful in climate change impact assessment. Considering its importance, Space Applications Centre, took up a project for mapping and characterizing major cropping systems of Indo-Gangetic Plains of India. The study area included the five states of Indo-Gangetic Plains (IGP) of India, i.e. Punjab, Haryana, Uttar Pradesh, Bihar and West Bengal. There were two aspects of the study. The first aspect included state and district level cropping system mapping using multi-date remote sensing (IRS-AWiFS and Radarsat ScanSAR) data. The second part was to characterize the cropping system using moderate spatial resolution multi-date remote sensing data (SPOT VGT NDVI) and ground survey. The remote sensing data was used to compute three cropping system performance indices (Multiple Cropping Index, Area Diversity Index and Cultivated Land Utilization Index). Ground survey was conducted using questionnaires filled up by 1,000 farmers selected from 103 villages based on the cropping systems map. Apart from ground survey, soil and water sampling and quality analysis were carried out to understand the effect of different cropping systems and their management practices. The results showed that, rice-wheat was the major cropping system of the IGP, followed by Rice-Fallow-Fallow and Maize-Wheat. Other major cropping systems of IGP included Sugarcane based, Pearl millet-Wheat, Rice-Fallow-Rice, Cotton-Wheat. The ground survey could identify 77 cropping systems, out of which 38 are rice-based systems. Out of these 77 cropping systems, there were 5 single crop systems, occupying 6.5% coverage (of all cropping system area), 56 double crop systems with 72.7% coverage, and 16 triple crop systems with 20.8% coverage. The cropping system performance analysis showed that the crop diversity was found to be highest in Haryana, while the cropping intensity was highest in Punjab state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号