首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38176篇
  免费   763篇
  国内免费   586篇
测绘学   965篇
大气科学   3148篇
地球物理   7718篇
地质学   12668篇
海洋学   3469篇
天文学   8945篇
综合类   132篇
自然地理   2480篇
  2021年   209篇
  2020年   269篇
  2019年   267篇
  2018年   646篇
  2017年   580篇
  2016年   912篇
  2015年   637篇
  2014年   887篇
  2013年   1933篇
  2012年   1072篇
  2011年   1498篇
  2010年   1244篇
  2009年   1828篇
  2008年   1628篇
  2007年   1545篇
  2006年   1465篇
  2005年   1320篇
  2004年   1249篇
  2003年   1200篇
  2002年   1115篇
  2001年   997篇
  2000年   1002篇
  1999年   930篇
  1998年   853篇
  1997年   852篇
  1996年   750篇
  1995年   658篇
  1994年   576篇
  1993年   529篇
  1992年   524篇
  1991年   491篇
  1990年   488篇
  1989年   428篇
  1988年   417篇
  1987年   461篇
  1986年   447篇
  1985年   546篇
  1984年   607篇
  1983年   592篇
  1982年   552篇
  1981年   489篇
  1980年   456篇
  1979年   433篇
  1978年   438篇
  1977年   374篇
  1976年   344篇
  1975年   354篇
  1974年   357篇
  1973年   362篇
  1972年   210篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
211.
146Sm–142Nd and 147Sm–143Nd systematics were investigated in garnet inclusions in diamonds from Finsch (S. Africa) and Hadean zircons from Jack Hills (W. Australia) to assess the potential of these systems as recorders of early Earth evolution. The study of Finsch inclusions was conducted on a composite sample of 50 peridotitic pyropes with a Nd model age of 3.3 Ga. Analysis of the Jack Hills zircons was performed on 790 grains with ion microprobe 207Pb/206Pb spot ages from 3.95 to 4.19 Ga. Finsch pyropes yield 100 × ?142Nd = ? 6 ± 12 ppm, ?143Nd = ? 32.5, and 147Sm/144Nd = 0.1150. These results do not confirm previous claims for a 30 ppm 142Nd excess in South African cratonic mantle. The lack of a 142Nd anomaly in these inclusions suggests that isotopic heterogeneities created by early mantle differentiation were remixed at a very fine scale prior to isolation of the South African lithosphere. Alternatively, this result may indicate that only a fraction of the mantle experienced depletion during the first 400 Myr of its history. Analysis of the Jack Hills zircon composite yielded 100 × ?142Nd = 8 ± 10 ppm, ?143Nd = 45 ± 1, and 147Sm/144Nd = 0.5891. Back-calculation of this present-day ?143Nd yields an unrealistic estimate for the initial ?143Nd of ? 160 ?-units, clearly indicating post-crystallization disturbance of the 147Sm–143Nd system. Examination of 146,147Sm–142,143Nd data reveals that the Nd budget of the Jack Hills sample is dominated by non-radiogenic Nd, possibly contained in recrystallized zircon rims or secondary subsurface minerals. This secondary material is characterized by highly discordant U–Pb ages. Although the mass fraction of altered zircon is unlikely to exceed 5–10% of total sample, its high LREE content precludes a reliable evaluation of 146Sm–142Nd systematics in Jack Hills zircons.  相似文献   
212.
Water management and engineering in the karstic High Atlas of Morocco are difficult tasks under the prevailing geological, hydrogeological, geomorphological, vegetational and climatic conditions. It is important to be able to understand and predict the characteristics and availability of water for future water planning in the region under changing climatic and agricultural conditions. An interdisciplinary analysis of problems and adequate hydrological modelling tools developed by geologists, hydrologists and biologists are necessary. The karst areas of the High Atlas Mountains are characterised by impermeable triassic basalt underlying substantial subsurface reservoirs with high potential discharge rates. The karst groundwater aquifers are extensive but largely unknown in dimension, probably with a hierarchical network of groundwater flow paths. It is estimated that approximately 70% of the surface water is directly lost to groundwater. Steep landslide- and debris flow prone slopes exist next to coarse-grained, highly porous river beds. Infrequent, high intensity rainfall or snowmelt causes a particularly high flood risk to these karst areas. In addition, agriculture and land use changes have degraded the karst areas. The most important driving forces for degradation include permanent overgrazing even during droughts and the use of firewood by a continually growing population. Large scale degradation of vegetation has occurred in the oro-mediterranean (mountainous Mediterranean) zone, between 2600 and 3400 m which coincides with the most important zone for karstic groundwater creation. The combination of high amounts of groundwater flow and rapid surface flow due to sparse vegetation has increased the problems of flood flow.  相似文献   
213.
Maps showing the potential for soil erosion at 1:100,000 scale are produced in a study area within Lebanon that can be used for evaluating erosion of Mediterranean karstic terrain with two different sets of impact factors built into an erosion model. The first set of factors is: soil erodibility, morphology, land cover/use and rainfall erosivity. The second is obtained by the first adding a fifth factor, rock infiltration. High infiltration can reflect high recharge, therefore decreasing the potential of surface runoff and hence the quantity of transported materials. Infiltration is derived as a function of lithology, lineament density, karstification and drainage density, all of which can be easily extracted from satellite imagery. The influence of these factors is assessed by a weight/rate approach sharing similarities between quantitative and qualitative methods and depending on pair-wise comparison matrix.The main outcome was the production of factorial maps and erosion susceptibility maps (scale 1:100,000). Spatial and attribute comparison of erosion maps indicates that the model that includes a measure of rock infiltration better represents erosion potential. Field investigation of rills and gullies shows 87.5% precision of the model with rock infiltration. This is 17.5% greater than the precision of the model without rock infiltration. These results indicate the necessity and importance of integrating information on infiltration of rock outcrops to assess soil erosion in Mediterranean karst landscapes.  相似文献   
214.
The Nernst partition coefficient of nickel (DNi) between Cr-spinel and silicate melt in natural systems has been investigated using mid-ocean ridge basalts (MORB) and other volcanic rocks. The Cr-spinel/olivine DNi values in volcanic rocks are between 1.2 and 0.3, indicating that the Cr-spinel/liquid DNi values vary from slightly higher to significantly lower than the olivine/liquid DNi values in natural systems. The Cr-spinel/liquid DNi values from the MORB samples vary between 6 and 11, slightly higher than those from the S-bearing experiments of Satari et al. [Satari P., Brenan J. M., Horn I. and McDonough W. F. (2002) Experimental constraints on the sulfide- and chromite-silicate melt partitioning behavior of rhenium and platinum-group elements. Economic Geology97, 385-398]. The results of the MORB samples and the experiments of Satari et al. (2002) indicate a negative correlation between the Cr-spinel/liquid DNi and the XCr values in Cr-spinels (Cr cation number on the basis of 3 total cations in the spinel structure). Variations of Cr-spinel/liquid DNi values with Cr-spinel compositions can be estimated from an empirical equation based on the results of the MORB samples and the experiments by Satari et al. (2002). The choice of Cr-spinel/liquid DNi = 10 for numerical modeling by Righter et al. [Righter K., Leeman W. P. and Hervig R. L. (2006) Partitioning of Ni, Co, and V between spinel-structured oxides and silicate melts: importance of spinel composition. Chemical Geology227, 1-25] is reasonable for basaltic systems. For picritic and komatiitic systems a lower value of ∼5 is more appropriate.  相似文献   
215.
Dissolved Fe concentrations in subterranean estuaries, like their river-seawater counterparts, are strongly controlled by non-conservative behavior during mixing of groundwater and seawater in coastal aquifers. Previous studies at a subterranean estuary of Waquoit Bay on Cape Cod, USA demonstrate extensive precipitation of groundwater-borne dissolved ferrous iron and subsequent accumulation of iron oxides onto subsurface sands. Waquoit Bay is thus an excellent natural laboratory to assess the mechanisms of Fe-isotope fractionation in redox-stratified environments and determine potential Fe-isotope signatures of groundwater sources to coastal seawater. Here, we report Fe isotope compositions of iron-coated sands and porewaters beneath the intertidal zone of Waquoit Bay. The distribution of pore water Fe shows two distinct sources of Fe: one residing in the upward rising plume of Fe-rich groundwater and the second in the salt-wedge zone of pore water. The groundwater source has high Fe(II) concentration consistent with anoxic conditions and yield δ56Fe values between 0.3 and −1.3‰. In contrast, sediment porewaters occurring in the mixing zone of the subterranean estuary have very low δ56Fe values down to −5‰. These low δ56Fe values reflect Fe-redox cycling and result from the preferential retention of heavy Fe-isotopes onto newly formed Fe-oxyhydroxides. Analysis of Fe-oxides precipitated onto subsurface sands in two cores from the subterranean estuary revealed strong δ56Fe and Fe concentration gradients over less than 2m, yielding an overall range of δ56Fe values between −2 and 1.5‰. The relationship between Fe concentration and δ56Fe of Fe-rich sands can be modeled by the progressive precipitation of Fe-oxides along fluid flow through the subterranean estuary. These results demonstrate that large-scale Fe isotope fractionation (up to 5‰) can occur in subterranean estuaries, which could lead to coastal seawater characterized by very low δ56Fe values relative to river values.  相似文献   
216.
A quantitative model of recent laboratory experiments on carbon isotope fractionation by methane-oxidizing bacteria is proposed. The simulated experimental apparatus consists of a bacterial culture with a constant liquid volume, a gas headspace and a methane bubbling mechanism. The relative effects of bacterial growth and transport phenomena that do not depend on cell density are clarified. In all calculations, gas-liquid mass transfer is defined by unconstrained model parameters. Limited mass transfer from the culture into the headspace, rather than the incomplete dissolution of substrate-rich bubbles, seems to have caused an apparent decrease in the measured carbon isotope fractionation. The experimenters attributed this fractionation shift to a growing imbalance among kinetic rates as methane consumption by bacteria increases. Model predictions support this interpretation but also show that changes in carbon isotope fractionation in the course of the experiments cannot be unambiguously correlated with bacterial cell density unless gas-liquid mass transfer parameters are calibrated. Simulations of other laboratory experiments indicate that a reported change in carbon isotope fractionation could, in part at least, be the result of experimental conditions rather than the emergence of a different methane oxidation pathway postulated by the experimenters. A careful evaluation of mass transfer from the liquid culture into the gas headspace is warranted in this type of experiments since isotope fractionation factors are likely to be used in a wide variety of environmental contexts.  相似文献   
217.
218.
In a global examination of mid-ocean ridge basalt (MORB) glasscompositions, we find that Na8–Fe8–depth variationsdo not support modeling of MORBs as aggregates of melt compositionsgenerated over a large range of temperature and pressure. However,the Na8–Fe8 variations are consistent with the compositionalsystematics of solidus melts in the plagioclase–spinellherzolite transition in the CaO–MgO–Al2O3–SiO2–Na2O–FeO(CMASNF) system. For natural compositions, the P–T rangefor melt extraction is estimated to be 1·2–1·5GPa and 1250–1280°C. This PT range is a closematch with the maximum PT conditions for explosive pressure-releasevaporization of carbonate-bearing melts. It is proposed thatfracturing of the lithosphere induces explosive formation andescape of CO2 vapor. This provides the vehicle for extractionof MORBs at a relatively uniform T and P. The upper portionof the CO2-bearing and slightly melted seismic low-velocityzone flows toward the ridge, rises at the ridge axis to lower-lithospheredepths, melts much more extensively during this rise, and releasesMORB melts to the surface driven by explosively escaping CO2vapor. The residue and overlying crust produced by this meltingthen migrate away from the ridge axis as new oceanic lithosphere.The entire process of oceanic lithosphere creation involvesonly the upper 140 km. When lithospheric stresses shift fractureformation to other localities, escape of CO2 ceases, the vehiclefor transporting melt to the surface disappears, and ridgesdie. Inverse correlations of Na8 vs Fe8 for MORB glasses areexplained by mantle heterogeneity, and positive variations superimposedon the inverse variations are consistent with progressive extractionof melts from short, ascending melting columns. The uniformlylow temperatures of MORB extraction are not consistent withthe existence of hot plumes on or close to ocean ridges. Inthis modeling, the southern Atlantic mantle from Bouvet to about26°N is relatively homogeneous, whereas the Atlantic mantlenorth of about 26°N shows significant long-range heterogeneity.The mantle between the Charlie Gibbs and Jan Mayen fracturezones is strongly enriched in FeO/MgO, perhaps by a trappedfragment of basaltic crust. Iceland is explained as the productof this enrichment, not a hot plume. The East Pacific Rise,Galapagos Ridge, Gorda Ridge, and Juan de Fuca Ridge samplemantle that is heterogeneous over short distances. The mantlebeneath the Red Sea is enriched in FeO/MgO relative to the mantlebeneath the northern Indian Ocean.  相似文献   
219.
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号