首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   2篇
  国内免费   3篇
测绘学   11篇
大气科学   8篇
地球物理   17篇
地质学   79篇
天文学   22篇
综合类   2篇
自然地理   1篇
  2022年   7篇
  2021年   1篇
  2020年   6篇
  2019年   2篇
  2018年   14篇
  2017年   11篇
  2016年   11篇
  2015年   8篇
  2014年   9篇
  2013年   5篇
  2012年   11篇
  2011年   4篇
  2010年   7篇
  2009年   7篇
  2008年   11篇
  2007年   3篇
  2006年   6篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1996年   2篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
61.
The Ichamati River drains the east and south side of the North 24 Parganas district which belongs to the Ganga-Brahmaputra Delta (GBD), covered by deep Quaternary sediments produced under tropical monsoon climate in India. The district is densely populated. The river has huge impact on its population. In this paper, particular attention has been paid to a new method, named optimum cross section index (OCI), which is a numerical representation of a river cross section with respect to its optimum condition. To establish the validity and reliability of OCI, as circumstantial evidences, we have measured and analyzed the geometric parameters, such as width, depth, hydraulic radius, wetted perimeter, and bank profile at 22 points, and applied the areal difference asymmetric index (ADAI). The paper considers that the changing characters of the geometric form of the cross sections and ADAI stand for the OCI. All the techniques reveal that (1) the area of channel decreases abruptly upstream downward, (2) the upstream channel is more symmetrical than the lower reach, and (3) the area of optimum channel gradually increases upstream downward. Results of the study show that the river is going to be deteriorating from upstream downward. OCI has been constructed based on width and depth, which are relatively easily available data. So, this model may be well assessable to identify the optimum channel for a river management.  相似文献   
62.
Mondal  Sayoni  Patel  Priyank Pravin 《Natural Hazards》2020,103(1):1051-1076

The largely impoverished rural communities of India are unable to bear the costs involved in creating and maintaining substantial structural measures for riverbank protection. The monsoonal nature of the country’s streams and an agrarian economy based on intensive cultivation further heighten the risk posed by annual peak flows and shifting stream courses. Mitigating this requires urgent, sustainable and cost-effective means of conserving valuable farmlands and stabilising channel boundaries. Towards this, riverbank erosion mitigation using Vetiver grass has been a recent development in the country and has been experimented with in a few areas. In this article, we examine how such riparian buffers are created through riverbank modification, planted and nurtured and the effectiveness of the grass in mitigating erosion, taking a small case study from rural West Bengal as an example. We especially focus on the government policies and frameworks and local stakeholder involvements that facilitate such an undertaking, with particular emphasis on the organisational workflow and the ground-level perception of such endeavours, as these are crucial to the success and effectiveness of such schemes. The marked successes achieved through the use of the Vetiver grass in abating erosion and the hindrances encountered in implementing such mitigation projects are outlined, along with the importance of such community-based approaches to river management and monitoring. This case study can be a microcosm for similar such endeavours, particularly in the rural global south.

  相似文献   
63.
Very Low Frequency (VLF) radio waves propagate through the Earth-ionosphere waveguide. Irregularities caused by excess or deficient extreme ultra-violet and X-rays, which otherwise sustain the ionosphere, change the waveguide properties and hence the signals are modified. We report the results of monitoring of the NWC transmitter (19.8?kHz) by a receiver placed at Khukurdaha (22°27′N, 87°45′E) during the partial solar eclipse (75?%) of 15th January, 2010. The propagation path from the transmitter to the receiver crosses the annular eclipse belt. We got a clear depression in the data during the period of the eclipse. Most interestingly, there was also a X-ray flaring activity in the sun on that day which reached its peak (C-type) right after the time when the eclipse reached its maximum. We saw the effects of the occultation of this flare in our VLF signal since a part of the X-ray active region was clearly blocked by the moon. We quantitatively compared by using analogies with previous observations and found best fitting parameters for the time when the flare was occulted. We then reconstructed the VLF signal in the absence of the occulted flare. To our knowledge, this is the first such incident where the solar flare was observed through lunar occultation and that too during a partial eclipse.  相似文献   
64.
65.
One of the major aspects of rock-physics forward modelling is to predict seismic behaviour at an undrilled location using drilled well data. It is important to model the rock and fluid properties away from drilled wells to characterize the reservoir and investigate the root causes of different seismic responses. Using the forward modelling technique, it is possible to explain the amplitude responses of present seismic data in terms of probable rock and reservoir properties. In this context, rock-physics modelling adds significant values in the prospect maturation process by reducing the risk of reservoir presence in exploration and appraisal phases. The synthetic amplitude variation with offset gathers from the forward model is compared with real seismic gathers to ensure the fidelity of the existing geological model. ‘Prospect A’ in the study area has been identified from seismic interpretation, which was deposited as slope fan sediments in Mahanadi basin, East Coast of India. The mapped prospect has shown class-I amplitude variation with offset response in seismic without any direct hydrocarbon indicator support. The existing geological model suggests the presence of an excellent gas reservoir with proven charge access from the fetch area, moderate porosity and type of lithology within this fan prospect. But, whether the seismic response from this geological model will exhibit a class-I amplitude variation with offset behaviour or ‘dim spot’ will be visible; the objective of the present study is to investigate these queries. A rock-physics depth trend analysis has been done to envisage the possibilities of class-I reservoir in ‘Prospect A’. Forward modelling, using a combination of mechanical and chemical compaction, shows the synthetic gas gathers at ‘Prospect A’, which are class I in nature. The study has also depicted 2D forward modelling using lithology and fluid properties of discovery well within similar stratigraphy to predict whether ‘dim spot’ will be seen in seismic. The estimated change in synthetic amplitude response has been observed as ∼5% at contact, which suggests that the changes will not be visible in seismic. The study connects the existing geological model with a top-down seismic interpretation using rock-physics forward modelling technique to mature a deep-water exploratory prospect.  相似文献   
66.
Water is the most important natural resource which forms the core of the ecological system. The advent of remote sensing has opened up new vistas in groundwater prospect evaluation, exploration and management. The groundwater resources of the study area, Rishikesh region of Garhwal Himalayas, are under threat due to population pressure caused by expanding tourism in this region. This entails sustainable and judicious use of this precious resource. The groundwater prospect evaluation in Rishikesh region has been attempted based on hydrogeomorphological mapping of the area consisting of thematic maps of hydrogeomorphology, geology, drainage, lineament, slope and relief using high resolution IRS-1C LISS III and PAN merged satellite images. The Rishikesh region exhibits diverse hydrogeomorphological conditions where the groundwater regime is controlled mainly by topography and geology. A probability-weighted approach has been applied during overlay analysis in ArcMap GIS environment. The overlay analysis allows a linear combination of weights of each thematic map with respect to ground water potential. Good groundwater prospects dominate in the area with more than 50% of the study area showing moderate to excellent potential. The study shows that the remote sensing and geoinformatics techniques can be applied effectively for groundwater prospect evaluation.  相似文献   
67.
In the Himalayan states of India, with increasing population and activities, large areas of forested land are being converted into other land-use features. There is a definite cause and effect relationship between changing practice for development and changes in land use. So, an estimation of land use dynamics and a futuristic trend pattern is essential. A combination of geospatial and statistical techniques were applied to assess the present and future land use/land cover scenario of Gangtok, the subHimalayan capital of Sikkim. Multi-temporal satellite imageries of the Landsat series were used to map the changes in land use of Gangtok from 1990 to 2010. Only three major land use classes (built-up area and bare land, step cultivated area, and forest) were considered as the most dynamic land use practices of Gangtok. The conventional supervised classification, and spectral indices-based thresholding using NDVI (Normalized Difference Vegetation Index) and SAVI (Soil Adjusted Vegetation Index) were applied along with the accuracy assessments. Markov modelling was applied for prediction of land use/land cover change and was validated. SAVI provides the most accurate estimate, i.e., the difference between predicted and actual data is minimal. Finally, a combination of Markov modelling and SAVI was used to predict the probable land-use scenario in Gangtok in 2020 AD, which indicted that more forest areas will be converted for step cultivation by the year 2020.  相似文献   
68.
Infrastructure and communication facilities are repeatedly affected by ground deformation in Gharwal Himalaya, India; for effective remediation measures, a thorough understanding of the real reasons for these movements is needed. In this regard, we undertook an integrated geophysical and geotechnical study of the Salna sinking zone close to the Main Central Thrust in Garhwal Himalaya. Our geophysical data include eight combined electrical resistivity tomography (ERT) and induced polarization imaging (IPI) profiles spanning 144–600 m, with 3–10 m electrode separation in the Wenner–Schlumberger configuration, and five micro-gravity profiles with 10–30 m station spacing covering the study region. The ERT sections clearly outline the heterogeneity in the subsurface lithology. Further, the ERT, IPI, and shaliness (shaleyness) sections infer the absence of clayey horizons and slip surfaces at depth. However, the Bouguer gravity analysis has revealed the existence of several faults in the subsurface, much beyond the reach of the majority of ERT sections. These inferred vertical to subvertical faults run parallel to the existing major lineaments and tectonic elements of the study region. The crisscross network of inferred faults has divided the entire study region into several blocks in the subsurface. Our studies stress that the sinking of the Salna village area is presently taking place along these inferred vertical to subvertical faults. The Chamoli earthquake in March 1999 probably triggered seismically induced ground movements in this region. The absence of few gravity-inferred faults in shallow ERT sections may hint at blind faults, which could serve as future source(s) for geohazards in the study region. Soil samples at two sites of study region were studied in a geotechnical laboratory. These, along with stability studies along four slope sections, have indicated the critical state of the study region. Thus, our integrated studies emphasize the crucial role of micro-gravity in finding fine subsurface structure at deeper depth level; supported by ERT and IPI at shallow depth intervals, they can satisfactorily explain the Salna sinking zone close to Lesser Himalaya. The geotechnical studies also lend support to these findings. These integrated studies have yielded a better understanding of the mass-wasting mechanism for the study region.  相似文献   
69.
Abstract The Archean to Paleo–Proterozoic Bundelkhand massif basement of the central Indian shield has been dissected by numerous mafic dykes of Proterozoic age. These dykes are low‐Ti tholeiites, ranging in composition from subalkaline basalt through basaltic‐andesite to dacite. They are enriched in light rare earth elements (LREE), large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE: Nb, P and Ti). Negative Sr anomaly is conspicuous. Nb/La ratios of the dykes are much lower compared with the primitive mantle, not much different from the average crustal values, but quite similar to those of continental and subduction related basaltic rocks. Bulk contamination of the mantle derived magma by crustal material is inadequate to explain the observed geochemical characteristics; instead contamination of the mantle/lithospheric source(s) via subduction of sediment is a better proposition. Thus, in addition to generating juvenile crust along the former island arcs, subduction processes appear to have influence on the development of enriched mantle/lithospheric source(s). The Bundelkhand massif basement is inferred to represent subduction related juvenile crust, that experienced lithospheric extension and rifting possibly in response to mantle plume activities. The latter probably supplied the required heat, material (fluids) and extensional environment to trigger melting in the refractory lithospheric source(s) and emplacement of the mafic dykes. Proterozoic mafic magmatic rocks from Bundelkhand, Aravalli, Singhbhum and Bastar regions of the Indian shield and those from the Garhwal region of the Lesser Himalaya display remarkably similar enriched incompatible trace elements characteristics, although limited chemical variations are observed in all these rocks. This may indicate the existence of a large magmatic province, different parts of which might have experienced similar petrogenetic processes and were probably derived from mantle/lithospheric source(s) with similar trace element characteristics. The minor, less enriched to depleted components of the Jharol Group of the Aravalli terrane and those from the Singhbhum terrane may represent protracted phases of rifting, that probably caused thinning and mobilization of the lithosphere, facilitating the eruption/emplacement of the asthenospheric melts (with N‐ to T‐types mid‐oceanic ridge basalts signatures) and deposition of deep water facies sediments in the younger developing oceanic basins. In contrast, Bundelkhand region did not experience such protracted rifting, although dyke swarms were emplaced and shallow water Bijawar Group and Vindhyan Supergroup sediments were deposited in continental rift basins. All these discrete Proterozoic terranes appear to have experienced similar petrogenetic processes, tectonomagmatic and possibly temporal evolution involving subduction processes, influencing the lithospheric source characteristics, followed by probably mantle plume induced ensialic rifting through to the development of oceanic basins in the Indian shield regions and their extension in the Lesser Himalaya.  相似文献   
70.
The Banded Gneissic Complex(BGC) of the Aravalli Craton is divided into BGC-I and BGC-Ⅱ; the BGC-Ⅱ(central Rajasthan) is comprised of the Sandmata Complex and the Mangalwar Complex. We report elemental and Nd-isotope geochemistry of basement gneisses of the Mangalwar Complex and constrain its origin and evolution. Geochemically, the basement gneisses have been classified as low-SiO_2 gneisses(LSG) and high-SiO_2 gneisses(HSG). Both the LSG and HSG are potassic, calc-alkaline and peraluminous in nature. The LSG are enriched in incompatible(K, Sr, Ba, large ion lithophile elements) and compatible elements(MgO, Cr, and Ni). They display fractionated rare earth element patterns(avg.La_N/Yb_N=12.1)with small Eu-anomaly(δEu=0.9), and exhibit negative anomalies of Nb and Ti in primitive mantlenormalized multi-element diagram. In terms of Nd-isotope geochemistry, the LSG are characterized by_(εNd)(t)=4.2 and depleted mantle model age of 3.3 Ga. To account for these geochemical characteristics we propose a three-stage petrogenetic model for the LSG:(1) fluids released from dehydration of subducting slab metasomatised the mantle-wedge;(2) the subducting slab underwent slab-breakoff causing upwelling and decompression melting of the asthenosphere during waning stage of subduction; and(3)upwelling asthenosphere provided the requisite heat for partial melting of the metasomatised mantlewedge leading to generation of the LSG parental magma. Asthenospheric upwelling also contributed in the LSG petrogenesis which is evident from its high Mg#(avg. 0.53). The LSG formed in this way are contemporary and chemically akin to sanukitoids of the BGC-I and Archean sanukitoids reported elsewhere. This provides a basis to consider the LSG as a part of the BGC-I. Contrary to the LSG, the HSG are depleted in compatible elements(MgO=avg. 1.1 wt.%; Cr=avg. 8 ppm; Ni=avg. 6 ppm) but enriched in incompatible elements(Sr=avg. 239 ppm, Ba=avg. 469 ppm). Its_(εNd)(t) values vary from-9.5 to-5.4.These chemical features of the HSG are akin to potassic granitoids found elsewhere. In this backdrop, we propose that the HSG suite of the Mangalwar Complex was derived from re-melting(partial) of an older crust(TTG?) occurring within the BGC-Ⅱ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号