首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1292篇
  免费   22篇
  国内免费   5篇
测绘学   25篇
大气科学   92篇
地球物理   272篇
地质学   455篇
海洋学   118篇
天文学   215篇
综合类   3篇
自然地理   139篇
  2020年   17篇
  2019年   10篇
  2018年   20篇
  2017年   13篇
  2016年   26篇
  2015年   24篇
  2014年   30篇
  2013年   66篇
  2012年   42篇
  2011年   56篇
  2010年   44篇
  2009年   56篇
  2008年   57篇
  2007年   54篇
  2006年   39篇
  2005年   44篇
  2004年   61篇
  2003年   50篇
  2002年   48篇
  2001年   31篇
  2000年   23篇
  1999年   17篇
  1998年   10篇
  1997年   23篇
  1996年   18篇
  1995年   27篇
  1994年   15篇
  1993年   22篇
  1992年   18篇
  1991年   18篇
  1990年   13篇
  1989年   15篇
  1988年   17篇
  1987年   20篇
  1986年   17篇
  1985年   20篇
  1984年   33篇
  1983年   30篇
  1982年   21篇
  1981年   18篇
  1980年   15篇
  1979年   15篇
  1978年   11篇
  1977年   14篇
  1976年   12篇
  1975年   10篇
  1974年   7篇
  1973年   11篇
  1972年   7篇
  1970年   11篇
排序方式: 共有1319条查询结果,搜索用时 0 毫秒
71.
72.
Igneous and sedimentary rocks recently dredged and cored from the steep western slope of the Beata Ridge provide important data on the composition, age and details of crustal evolution of the rock-types responsible for recorded compressional wave velocities. The sedimentary rock samples also provide new data concerning the age and depositional environment of overlying sedimentary reflectors.

The deepest (4,100 m) dredge haul contains deeply weathered coarsegrained igneous rocks. Nine other hauls, distributed between 4,000–2,300 m, contain holocrystalline basalts and diabases. The compressional wave velocity of air-dried samples of two holocrystalline basalts and a diabase at atmospheric pressure ranges from 5.0–5.6 km/sec. Sampling in depths less than 2,300 m shows that the crest of the Beata Ridge is capped by Quaternary deposits underlain by consolidated carbonate sediment of at least Middle Eocene age. The faunal assemblages of the Mid-Eocene samples are the product of normal accumulation in a shallow shelf environment.

The dredging results coupled with previously published seismic reflection and refraction data, suggest that the 5.4–5.7 km/sec crust is composed of a layer of basalt and diabase which outcrops below 2,300 m, on a fault-generated escarpment that was produced in the Late Cretaceous-Early Tertiary. The shallow shelf samples of Eocene age indicate that the Beata Ridge was higher in the Early Tertiary and has subsided subsequently to its present depth.  相似文献   

73.
Komatiitic rocks from Gorgona Island, Colombia, in contrast to their Archaean counterparts, occur as rather structureless flows. In addition, textural and mineralogical features indicate that the Gorgona komatiites may have crystallized from superheated liquids. Komatiitic rocks have MgO contents which range from 24 to 11 wt.% and plot on well-defined olivine (Fo90) control lines. Calculations show that potential evolved liquids (MgO<11 wt%) will be SiO2-poor. Komatiites, in this case, cannot be regarded as parental to the associated tholeiitic basalt sequence.On the basis of REE concentrations and Sr, Nd isotopic compositions, the associated basalts are found to be of two types. One type (K-tholeiite) is characterized by noticeably fractionated REE patterns and relatively primitive isotopic compositions similar to those of the komatiites. K-tholeiites, together with komatiites, are regarded as comprising a distinctive komatiitic suite. REE patterns within this suite show progressive depletion in the LREE from K-tholeiites to komatiites, and represent increasingly higher degrees of melting of the same mantle source region. The other type (T-tholeiite), representative of the bulk of the exposed basalt sequence, has flat REE patterns and relatively evolved isotopic compositions. This tholeiitic suite is clearly genetically unrelated to the komatiitic suite.  相似文献   
74.
The solubility and dissolution kinetics of apatite in felsic melts at 850°–1500°C have been examined experimentally by allowing apatite crystals to partially dissolve into apatite-undersaturated melts containing 0–10 wt% water. Analysis of P and Ca gradients in the crystal/melt interfacial region enables determination of both the diffusivities and the saturation levels of these components in the melt. Phosphorus diffusion was identified as the rate-limiting factor in apatite dissolution. Results of four experiments at 8 kbar run in the virtual absence of water yield an activation energy (E) for P diffusion of 143.6 ± 2.8 kcal-mol?1 and frequency factor (D0) of 2.23+2.88?1.26 × 109cm2-sec?1. The addition of water causes dramatic and systematic reduction of both E and D0 such that at 6 wt% H2O the values are ~25 kcal-mol?1 and 10?5 cm2-sec?1, respectively. At 1300°C, the diffusivity of P increases by a factor of 50 over the first 2% of water added to the melt, but rises by a factor of only two between 2 and 6%, perhaps reflecting the effect of a concentration-dependent mechanism of H2O solution. Calcium diffusion gradients do not conform well to simple diffusion theory because the release of calcium at the dissolving crystal surface is linked to the transport rate of phosphorus in the melt, which is typically two orders of magnitude slower than Ca. Calcium chemical diffusion rates calculated from the observed gradients are about 50 times slower than calcium tracer diffusion.Apatite solubilities obtained from these experiments, together with previous results, can be described as a function of absolute temperature (T) and melt composition by the expression: In Dapatite/meltP = [(8400 + ((SiO2 ? 0.5)2.64 × 104))/T] ? [3.1 + (12.4(SiO2 ? 0.5))] where SiO2 is the weight fraction of silica in the melt. This model appears to be valid between 45% and 75% SiO2, 0 and 10% water, and for the range of pressures expected in the crust.The diffusivity information extracted from the experiments can be directly applied to several problems of geochemical interest, including I) dissolution times for apatite during crustal anatexis, and 2) pileup of P, and consequent local saturation in apatite, at the surfaces of growing major-mineral phases.  相似文献   
75.
Alpha thermochronology of carbonates   总被引:1,自引:0,他引:1  
Step-heating experiments on 17 calcites from 11 different samples and 6 dolomites from 5 samples suggest a closure temperature of He in carbonates ∼70 ± 10 °C for a cooling rate of 10 °C/m.y. The bulk closure temperature in some samples may tend slightly higher due to the presence of diffusion domains larger (and therefore more retentive) than the sites in which the majority of He resides. The diffusivity of He in calcite is independent of the genesis of the mineral (igneous, sedimentary, metamorphic) or the source of the He (radiogenic, common, or laboratory induced) and in all samples analyzed the effective diffusion dimension for He is smaller than the size of the crystals investigated. Although calcite is a low-U mineral, this shortcoming can be overcome by analyzing large samples (>2 mm diameter) provided samples have a minimum of ∼0.3 ppm U; samples with smaller concentrations of alpha-producers are unlikely to produce enough radiogenic 4He sufficient to overwhelm He present in the crystals at the time they passed through their closure temperature.  相似文献   
76.
Mangakino, the oldest rhyolitic caldera centre delineated in the Taupo Volcanic Zone of New Zealand, generated two very large (super-sized) ignimbrite eruptions, the 1.21 ± 0.04 Ma >500 km3 Ongatiti and ~1.0 Ma ~1,200 km3 Kidnappers events, the latter of which was followed after a short period of erosion by the ~200 km3 Rocky Hill eruption. We present U/Pb ages and trace-element analyses on zircons from pumice clasts from these three eruptions by Secondary Ion Mass Spectrometry (SIMS) using SHRIMP-RG instruments to illustrate the evolution of the respective magmatic systems. U–Pb age spectra from the Ongatiti imply growth of the magmatic system over ~250 kyr, with a peak of crystallisation around 1.32 Ma, ~100 kyr prior to eruption. The zircons are inferred to have then remained stable in a mush with little crystallisation and/or dissolution before later rejuvenation of the system at the lead-in to eruption. The paired Kidnappers and Rocky Hill eruptions have U–Pb zircon ages and geochemical signatures that suggest they were products of a common system grown over ~200 kyr. The Kidnappers and Rocky Hill samples show similar weakly bimodal age spectra, with peaks at 1.1 and 1.0 Ma, suggesting that an inherited antecrystic population was augmented by crystals grown at ages within uncertainty of the eruption age. In the Kidnappers, this younger age peak is dominantly seen in needle-shaped low U grains with aspect ratios of up to 18. In all three deposits, zircon cores show larger ranges and higher absolute concentrations of trace elements than zircon rims, consistent with zircon crystallisation from evolving melts undergoing crystal fractionation involving plagioclase and amphibole. Abundances and ratios of many trace elements frequently show variations between different sectors within single grains, even where there is no visible sector zoning in cathodoluminescence (CL) imaging. Substitution mechanisms, as reflected in the molar (Sc + Y + REE3+)/P ratio, differ in the same growth zone between the sides (along a-axis and b-axis: values approaching 1.0) and tips (c-axis: values between 1.5 and 5.0) of single crystals. These observations have implications for the use of zircons for tracking magmatic processes, particularly in techniques where CL zonation within crystals is not assessed and small analytical spot sizes cannot be achieved. These observations also limit applicability of the widely used Ti-in-zircon thermometer. The age spectra for the Ongatiti and Kidnappers/Rocky Hill samples indicate that both magmatic systems were newly built in the time-breaks after respective previous large eruptions from Mangakino. Trace element variations defining three-component mixing suggest that zircons, sourced from multiple melts, contributed to the population in each system.  相似文献   
77.
The Klyuchevskoy group of volcanoes in the Kamchatka arc erupts compositionally diverse magmas (high-Mg basalts to dacites) over small spatial scales. New high-precision Pb isotope data from modern juvenile (1956–present) erupted products and hosted enclaves and xenoliths from Bezymianny volcano reveal that Bezymianny and Klyuchevskoy volcanoes, separated by only 9 km, undergo varying degrees of crustal processing through independent crustal columns. Lead isotope compositions of Klyuchevskoy basalts–basaltic andesites are more radiogenic than Bezymianny andesites (208Pb/204Pb = 37.850–37.903, 207Pb/204Pb = 15.468–15.480, and 206Pb/204Pb = 18.249–18.278 at Bezymianny; 208Pb/204Pb = 37.907–37.949, 207Pb/204Pb = 15.478–15.487, and 206Pb/204Pb = 18.289–18.305 at Klyuchevskoy). A mid-crustal xenolith with a crystallization pressure of 5.2 ± 0.6 kbars inferred from two-pyroxene geobarometry and basaltic andesite enclaves from Bezymianny record less radiogenic Pb isotope compositions than their host magmas. Hence, assimilation of such lithologies in the middle or lower crust can explain the Pb isotope data in Bezymianny andesites, although a component of magma mixing with less radiogenic mafic recharge magmas and possible mantle heterogeneity cannot be excluded. Lead isotope compositions for the Klyuchevskoy Group are less radiogenic than other arc segments (Karymsky—Eastern Volcanic Zone; Shiveluch—Northern Central Kamchatka Depression), which indicate increased lower-crustal assimilation beneath the Klyuchevskoy Group. Decadal timescale Pb isotope variations at Klyuchevskoy demonstrate rapid changes in the magnitude of assimilation at a volcanic center. Lead isotope data coupled with trace element data reflect the influence of crustal processes on magma compositions even in thin mafic volcanic arcs.  相似文献   
78.
The stratigraphy in Vines 1, a 2017.5 m-deep cored stratigraphic hole drilled by the Geological Survey of Western Australia in 2001 near the Western Australian – South Australian border, has been reinterpreted with implications for the Neoproterozoic to Cambrian geological history of the Officer Basin. A previous interpretation considered the intersected succession as a conformable stratigraphic package, the Vines Formation. An assemblage of palynomorphs, found throughout the hole and previously used to infer an age of no older than earliest Cambrian, is now thought to consist of contaminants. An older assemblage, which is considered to be reworked and inherited from underlying rocks, provides a new maximum age constraint of mid-Neoproterozoic. Based on sedimentological interpretations and comparisons with other drillholes in the western Officer Basin, and the succession in the eastern Officer Basin, the Vines 1 succession is reinterpreted as four discrete sedimentary packages, the Pirrilyungka (new name), Wahlgu, Lungkarta and Vines (redefined) Formations, in ascending order. The Pirrilyungka and Wahlgu Formations include glacigenic sediments and may correlate with similar glacial successions in Supersequences 2 and 3 (mid to late Cryogenian) of the Centralian Superbasin, and the Sturt Tillite and Elatina Formation and their equivalents in the Adelaide Rift Complex of South Australia, respectively. The eolian Lungkarta Formation and fluvial Vines Formation are considered, on regional evidence, to be most likely of Ediacaran to earliest Cambrian age.  相似文献   
79.
Modern subaerial sand beds deposited by major tsunamis and hurricanes were compared at trench, transect, and sub-regional spatial scales to evaluate which attributes are most useful for distinguishing the two types of deposits. Physical criteria that may be diagnostic include: sediment composition, textures and grading, types and organization of stratification, thickness, geometry, and landscape conformity.

Published reports of Pacific Ocean tsunami impacts and our field observations suggest that sandy tsunami deposits are generally < 25 cm thick, extend hundreds of meters inland from the beach, and fill microtopography but generally conform to the antecedent landscape. They commonly are a single homogeneous bed that is normally graded overall, or that consists of only a few thin layers. Mud intraclasts and mud laminae within the deposit are strong evidence of tsunami deposition. Twig orientation or other indicators of return flow during bed aggradation are also diagnostic of tsunami deposits. Sandy storm deposits tend to be > 30 cm thick, generally extend < 300 m from the beach, and will not advance beyond the antecedent macrotopography they are able to fill. They typically are composed of numerous subhorizontal planar laminae organized into multiple laminasets that are normally or inversely graded, they do not contain internal mud laminae and rarely contain mud intraclasts. Application of these distinguishing characteristics depends on their preservation potential and any deposit modifications that accompany burial.

The distinctions between tsunami and storm deposits are related to differences in the hydrodynamics and sediment-sorting processes during transport. Tsunami deposition results from a few high-velocity, long-period waves that entrain sediment from the shoreface, beach, and landward erosion zone. Tsunamis can have flow depths greater than 10 m, transport sediment primarily in suspension, and distribute the load over a broad region where sediment falls out of suspension when flow decelerates. In contrast, storm inundation generally is gradual and prolonged, consisting of many waves that erode beaches and dunes with no significant overland return flow until after the main flooding. Storm flow depths are commonly < 3 m, sediment is transported primarily as bed load by traction, and the load is deposited within a zone relatively close to the beach.  相似文献   

80.
The carbonatite at Magnet Cove, Arkansas, USA contains a great variety and abundance of magmatic and hydrothermal inclusions that provide an informative, though fragmentary, record of the original carbonatite melt and of late hydrothermal solutions which permeated the complex in postmagmatic time. These inclusions were studied by optical and scanning electron microscopy. Primary magmatic inclusions in monticellite indicate that the original carbonatite melt contained approximately 49.7 wt% CaO, 16.7% CO2, 15.7% SiO2, 11.4% H2O, 4.4% FeO+Fe2O3, 1.1% P2O5 and 1.0% MgO. The melt was richer in SiO2 and iron oxides than the carbonatite as now exposed; this is attributed to crystal settling and relative enrichment of calcite at shallower levels. The density of the carbonatite melt as revealed by the magmatic inclusions was approximately 2.2–2.3 g/cc. Such a light melt should separate rapidly from any denser parent material and could be driven forcibly into overlying crustal rocks by buoyant forces alone. Fluid inclusions in apatite suggest that a separate (immiscible) phase composed of supercritical CO2 fluid of low density coexisted with the carbonatite magma, but the inclusion record in this mineral is inconclusive with respect to the nature of any other coexisting fluids. Maximum total pressure during CO2 entrapment was about 450 bars, suggesting depths of 1.5 km or less for apatite crystallization and supporting earlier proposals of a shallow, subvolcanic setting for the complex. Numerous secondary inclusions in the Magnet Cove calcite contain an intriguing variety of daughter minerals including some 19 alkali, alkaline earth and rare earth carbonates, sulfates and chlorides few of which are known as macroscopic phases in the complex. The exotic fluids from which the daughter minerals formed are inferred to have cooled and diluted through time by progressive mixing with local groundwaters. These fluids may be responsible for certain late veins and elemental enrichments associated with the complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号