首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
地质学   29篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2008年   1篇
  2007年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
21.
A new mineral romanorlovite has been found in the upper, moderately hot zones of two fumaroles, Glavnaya Tenoritovaya (Major Tenorite) and Arsenatnaya (Arsenate), located at the second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with avdoninite in both fumaroles, and in Glavnaya Tenoritovaya, it is also associated with belloite, sylvite, carnallite, mitscherlichite, sanguite, chlorothionite, eriochalcite, chrysothallite, and mellizinkalite. Romanorlovite occurs as prismatic, equant, or tabular tetragonal crystals up to 0.1 mm in size, crystal clusters up to 0.5 mm, and crusts up to 2 × 2 mm in area. The mineral is transparent with vitreous luster. Its color varies from yellow-brown to dark brown, and tiny crystals are honey- or golden-yellow. Cleavage is not observed. Romanorlovite is brittle. The Mohs hardness is ca ~3. The calculated density varies from 2.72 to 2.79 g/cm3 depending on the content of admixed Pb. The mineral is optically uniaxial (–), ω = 1.727(3), ε = 1.694(2). The Raman spectrum has been reported. The chemical composition of the holotype sample (wt %; electron microprobe data, contents of О and H calculated by stoichiometry) is as follows: 21.52 K, 0.89 Pb, 28.79 Cu, 0.02 Zn, 44.74 Cl, 4.85 Ocalc, 0.41 Hcalc, total 101.22. Its empirical formula calculated based on Cl25 with (ОН)4(Н2О)2 is K10.90Pb0.09Cu8.97Zn0.01Cl25(OH)4 · 2H2O. The simplified formula is K11Cu9Cl25(OH)4 · 2H2O (Z = 4). Romanorlovite is tetragonal, space group[ I4/mmm. The unit cell parameters are (1) holotype: a = 17.5804(7), c = 15.9075(6) Å, V = 4916.5(3) Å3; (2) the sample enriched in Pb on which the crystal structure was refined: a = 17.5538(19), c = 15.8620(17) Å, V= 4887.7(9) Å3. The strongest reflections of the powder XRD pattern (d, Å–I[hkl]) are 12.48–56[110], 11.74–36[101], 8.80–100[200], 7.97–34[002], 6.71–40[112], 3.165–32[512], 2.933–80[215, 433], 2.607–38[514]. The mineral is named in honor of Roman Yu. Orlov (1929-2005), Russian mineralogist and physicist, who worked in the Department of Mineralogy, Moscow State University.  相似文献   
22.
A new mineral, tatarinovite, ideally Са3Аl(SO4)[В(ОН)4](ОН)6 · 12Н2O, has been found in cavities of rhodingites at the Bazhenovskoe chrysotile asbestos deposit, Middle Urals, Russia. It occurs (1) colorless, with vitreous luster, bipyramidal crystals up to 1 mm across in cavities within massive diopside, in association with xonotlite, clinochlore, pectolite and calcite, and (2) as white granular aggregates up to 5 mm in size on grossular with pectolite, diopside, calcite, and xonotlite. The Mohs hardness is 3; perfect cleavage on (100) is observed. D meas = 1.79(1), D calc = 1.777 g/cm3. Tatarinovite is optically uniaxial (+), ω = 1.475(2), ε = 1.496(2). The IR spectrum contains characteristic bands of SO4 2?, CO3 2?, B(OH)4 ?, B(OH)3, Al(OH)6 3-, Si(OH)6 2-, OH, and H2O. The chemical composition of tatarinovite (wt %; ICP-AES; H2O was determined by the Alimarin method; CO2 was determined by selective sorption on askarite) is as follows: 27.40 CaO, 4.06 B2O3, 6.34 A12O3, 0.03 Fe2O3, 2.43 SiO2, 8.48 SO3, 4.2 CO2, 46.1 H2O, total is 99.04. The empirical formula (calculated on the basis of 3Ca apfu) is H31.41Ca3.00(Al0.76Si0.25)Σ1.01 · (B0.72S0.65C0.591.96O24.55. Tatarinovite is hexagonal, space gr. P63, a = 11.1110(4) Å, c = 10.6294(6) Å, V = 1136.44(9) A3, Z = 2. Its crystal chemical formula is Са3(Аl0.70Si0.30) · {[SO4]0.34[В(ОН)4]0.33[СO3]0.24}{[SO4]0.30[В(ОН)4]0.34[СО3]0.30[В(ОН)3]0.06}(ОН5·73О0.27) · 12Н2O. The strongest reflections of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are 9.63 (100) (100), 5.556 (30) (110), 4.654 (14) (102), 3.841 (21) (112), 3.441 (12) (211), 2.746 (10) (302), 2.538 (12) (213). Tatarinovite was named in memory of the Russian geologist and petrologist Pavel Mikhailovich Tatarinov (1895–1976), a well-known specialist in chrysotile asbestos deposits. Type specimens have been deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow.  相似文献   
23.
24.
Dachiardite-K (IMA No. 2015-041), a new zeolite, is a K-dominant member of the dachiardite series with the idealized formula (К2Са)(Al4Si20O48) · 13H2О. It occurs in the walls of opal–chalcedony veinlets cutting hydrothermally altered effusive rocks of the Zvezdel paleovolcanic complex near the village of Austa, Momchilgrad Municipality, Eastern Rhodopes, Bulgaria. Chalcedony, opal, dachiardite-Ca, dachiardite-Na, ferrierite-Mg, ferrierite-K, clinoptilolite-Ca, clinoptilolite-K, mordenite, smectite, celadonite, calcite, and barite are associated minerals. The mineral forms radiated aggregates up to 8 mm in diameter consisting of split acicular individuals. Dachiardite-K is white to colorless. Perfect cleavage is observed on (100). D meas = 2.18(2), D calc = 2.169 g/cm3. The IR spectrum is given. Dachiardite-K is biaxial (+), α = 1.477 (calc), β = 1.478(2), γ = 1.481(2), 2V meas = 65(10)°. The chemical composition (electron microprobe, mean of six point analyses, H2O determined by gravimetric method) is as follows, wt %: 4.51 K2O, 3.27 CaO, 0.41 BaO, 10.36 A12O3, 67.90 SiO2, 13.2 H2O, total is 99.65. The empirical formula is H26.23K1.71Ca1.04Ba0.05Al3.64Si20.24O61. The strongest reflections in the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 9.76 (24) (001), 8.85 (58) (200), 4.870 (59) (002), 3.807 (16) (202), 3.768 (20) (112, 020), 3.457 (100) (220), 2.966 (17) (602). Dachiardite-K is monoclinic, space gr. C2/m, Cm or C2; the unit cell parameters refined from the powder X-ray diffraction data are: a = 18.670(8), b = 7.511(3), c = 10.231(4) Å, β = 107.79(3)°, V= 1366(1) Å3, Z = 1. The type specimen has been deposited in the Earth and Man National Museum, Sofia, Bulgaria, with the registration number 23927.  相似文献   
25.
Karchevskyite, a new mineral related to the family of layered double hydroxides (LDHs), has been found in the Iron open pit at the Kovdor carbonatite massif, Kola Peninsula, Russia. The mineral occurs as spherulites of up to 1.5 mm in diameter composed of thin, curved lamellae. Dolomite, magnetite, quintinite-3T, strontium carbonate, and fluorapatite are associated minerals. Karchevskyite is white in aggregates and colorless in separate platelets. Its luster is vitreous with a pearly shine on the cleavage surface. The new mineral is nonfluorescent. The Mohs hardness is 2. The cleavage is eminent (micalike), parallel to {001}. The measured density is 2.21(2) g/cm3, and the calculated value is 2.18(1) g/cm3. Karchevskyite is colorless and nonpleochroic in immersion liquids. It is uniaxial, negative, ω = 1.542(2), and ? = 1.534(2). The chemical composition (electron microprobe, average of ten point analyses, standard deviation in parentheses, wt %) is as follows: 29.7(1.1) MgO, 18.3(0.7) Al2O3, 7.4(0.4) SrO, 0.2(0.1) CaO, 1.3(0.2) P2O5, 14.5(0.4) CO2, and 28.6 H2O (estimated by difference); the total is 100. The empirical formula calculated on the basis of nine Al atoms is Mg18.00Al9.00(OH)54.00(Sr1.79Mg0.48Ca0.09)2.36 (Ca3)8.26(PO4)0.46(H2O)6.54(H3O)4.18. The idealized formula is [Mg18Al9(OH)54][Sr2(CO3, PO4)9(H2O, H3O)11]. The new mineral slowly dissolves in 10% HCl with weak effervescence. Karchevskyite is trigonal; possible space groups are P3, P3, P $ \overline 3 Karchevskyite, a new mineral related to the family of layered double hydroxides (LDHs), has been found in the Iron open pit at the Kovdor carbonatite massif, Kola Peninsula, Russia. The mineral occurs as spherulites of up to 1.5 mm in diameter composed of thin, curved lamellae. Dolomite, magnetite, quintinite-3T, strontium carbonate, and fluorapatite are associated minerals. Karchevskyite is white in aggregates and colorless in separate platelets. Its luster is vitreous with a pearly shine on the cleavage surface. The new mineral is nonfluorescent. The Mohs hardness is 2. The cleavage is eminent (micalike), parallel to {001}. The measured density is 2.21(2) g/cm3, and the calculated value is 2.18(1) g/cm3. Karchevskyite is colorless and nonpleochroic in immersion liquids. It is uniaxial, negative, ω = 1.542(2), and ɛ = 1.534(2). The chemical composition (electron microprobe, average of ten point analyses, standard deviation in parentheses, wt %) is as follows: 29.7(1.1) MgO, 18.3(0.7) Al2O3, 7.4(0.4) SrO, 0.2(0.1) CaO, 1.3(0.2) P2O5, 14.5(0.4) CO2, and 28.6 H2O (estimated by difference); the total is 100. The empirical formula calculated on the basis of nine Al atoms is Mg18.00Al9.00(OH)54.00(Sr1.79Mg0.48Ca0.09)2.36 (Ca3)8.26(PO4)0.46(H2O)6.54(H3O)4.18. The idealized formula is [Mg18Al9(OH)54][Sr2(CO3, PO4)9(H2O, H3O)11]. The new mineral slowly dissolves in 10% HCl with weak effervescence. Karchevskyite is trigonal; possible space groups are P3, P3, P 1m, P31m, P312, P312, P3m1, or P3m1; unit-cell dimensions are a = 16.055(6), c = 25.66(1) ?, V = 5728(7) ?3, Z = 3. The strongest reflections in the X-ray powder diffraction pattern [d, (I, %)(hkl)] are: 8.52(10)(003), 6.41(4)(004), 5.13(3)(005), 4.27(6)(006), 3.665(9)(007), 3.547(9)(107), 3.081(6)(315). Wavenumbers of absorption bands in the infrared spectrum of the new mineral are (cm−1; s is shoulder): 3470, 3420s, 3035, 2960s, 1650, 1426, 1366, 1024, 937, 860, 779, 678, 615s, 553, 449, 386. Results of thermogravimetric analysis: total weight loss is 42.0 wt %, with three stages of loss: 12.2%, maximum rate at 230°C; 6.1%, maximum rate at 320°C; and 23.7%, maximum rate at 440°C. Karchevskyite is a late-stage hydrothermal mineral. The mineral is named in memory of Russian mineralogist Pavel Karchevsky (1976–2002), who made a significant contribution to the study of carbonatites. The type material of karchevskyite is deposited at the Mineralogical Museum, Division of Mineralogy, St. Petersburg State University, and the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow. Original Russian Text ? S.N. Britvin, N.V. Chukanov, G.K. Bekenova, M.A. Yagovkina, A.V. Antonov, A.N. Bogdanova, N.I. Krasnova, 2007, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2007, No. 5, pp. 44–56. The new mineral karchevskyite and its name accepted by the Commission on New Minerals and Mineral Names, Russian Mineralogical Society, March 21, 2005. Approved by the Commission on New Minerals and Mineral Names, International Mineralogical Association, June 30, 2005.  相似文献   
26.
A new mineral vigrishinite, epistolite-group member and first layer titanosilicate with species-defining Zn, was found at Mt. Malyi Punkaruaiv, in the Lovozero alkaline complex, Kola Peninsula, Russia. It occurs in a hydrothermally altered peralkaline pegmatite and is associated with microcline, ussingite, aegirine, analcime, gmelinite-Na, and chabazite-Ca. Vigrishinite forms rectangular or irregularly shaped lamellae up to 0.05 × 2 × 3 cm flattened on [001]. They are typically slightly split and show blocky character. The mineral is translucent to transparent and pale pink, yellowish-pinkish or colorless. The luster is vitreous. The Mohs’ hardness is 2.5–3. Vigrishinite is brittle. Cleavage is {001} perfect. D meas = 3.03(2), D calc = 2.97 g/cm3. The mineral is optically biaxial (?), α = 1.755(5), β = 1.82(1), γ = 1.835(8), 2V meas = 45(10)°, 2V calc = 50°. IR spectrum is given. The chemical composition (wt %; average of 9 point analyses, H2O is determined by modified Penfield method) is as follows: 0.98 Na2O, 0.30 K2O, 0.56 CaO, 0.05 SrO, 0.44 BaO, 0.36 MgO, 2.09 MnO, 14.39 ZnO, 2.00 Fe2O3, 0.36 Al2O3, 32.29 SiO2, 29.14 TiO2, 2.08 ZrO2, 7.34 Nb2O5, 0.46 F, 9.1 H2O, ?0.19 O=F2, total is 101.75. The empirical formula calculated on the basis of Si + Al = 4 is: H7.42(Zn1.30Na0.23Mn0.22Ca0.07Mg0.07K0.05Ba0.02)Σ1.96(Ti2.68Nb0.41Fe 0.18 3+ Zr0.12)Σ3.39(Si3.95Al0.05)Σ4 20.31F0.18. The simplified formula is: Zn2Ti4?x Si4O14(OH,H2O,□)8 (x < 1). Vigrishinite is triclinic, space group P $\bar 1$ , a = 8.743(9), b = 8.698(9), c = 11.581(11)Å, α = 91.54(8)°, β = 98.29(8)°, γ = 105.65(8)°, V = 837.2(1.5) Å3, Z = 2. The strongest reflections in the X-ray powder pattern (d, Å, ?I[hkl]) are: 11.7-67[001], 8.27-50[100], 6.94-43[0 $\bar 1$ 1, $\bar 1$ 10], 5.73–54[1 $\bar 1$ 1, 002], 4.17-65[020, $\bar 1$ $\bar 1$ 2, 200], and 2.861-100[3 $\bar 1$ 0, 2 $\bar 2$ 2, 004, 1 $\bar 3$ 1]. The crystal structure model was obtained on a single crystal, R = 0.171. Vigrishinite and murmanite are close in the structure of the TiSiO motif, but strongly differ from each other in part of large cations and H-bearing groups. Vigrishinite is named in honor of Viktor G. Grishin (b. 1953), a Russian amateur mineralogist and mineral collector, to pay tribute to his contribution to the mineralogy of the Lovozero Complex. The type specimen is deposited in the Fersman Mineralogical Museum of Russian Academy of Sciences, Moscow.  相似文献   
27.
A new mineral, günterblassite, has been found in the basaltic quarry at Mount Rother Kopf near Gerolstein, Rheinland-Pfalz, Germany as a constituent of the late assemblage of nepheline, leucite, augite, phlogopite, åkermanite, magnetite, perovskite, a lamprophyllite-group mineral, götzenite, chabazite-K, chabazite-Ca, phillipsite-K, and calcite. Günterblassite occurs as colorless lamellar crystals up to 0.2 × 1 × 1.5 mm in size and their clusters. The mineral is brittle, with perfect cleavage parallel to (001) and less perfect cleavage parallel to (100) and (010). The Mohs hardness is 4. The calculated and measured density is 2.17 and 2.18(1) g/cm3, respectively. The IR spectrum is given. The new mineral is optically biaxial and positive as follows: α = 1.488(2), β = 1.490(2), γ = 1.493(2), 2V meas = 80(5)°. The chemical composition (electron microprobe, average of seven point analyses, H2O is determined by gas chromatography, wt %) is as follows: 0.40 Na2O, 5.18 K2O, 0.58 MgO, 3.58 CaO, 4.08 BaO, 3.06 FeO, 13.98 Al2O3, 52.94 SiO2, 15.2 H2O, and the total is 98.99. The empirical formula is Na0.15K1.24Ba0.30Ca0.72Mg0.16F 0.48 2+ [Si9.91Al3.09O25.25(OH)3.75] · 7.29H2O. The crystal structure has been determined from a single crystal, R = 0.049. Günterblassite is orthorhombic, space group Pnm21; the unit-cell dimensions are a = 6.528(1), b = 6.970(1), c = 37.216(5) Å, V = 1693.3(4) Å3, Z = 2. Günterblassite is a member of a new structural type; its structure is based on three-layer block [Si13O25(OH,O)4]. The strong reflections in the X-ray powder diffraction pattern [d Å (I, %) are as follows: 6.532 (100), 6.263 (67), 3.244 (49), 3.062 (91), 2.996 (66), 2.955 (63), and 2.763 (60). The mineral was named in honor of Günter Blass (born in 1943), a well-known amateur mineralogist and specialist in electron microprobe and X-ray diffraction. The type specimen of günterblassite is deposited in the collections of the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia, with the registration number 4107/1.  相似文献   
28.
Understanding the mechanisms of selenium behavior under near-surface conditions is a topical problem of modern mineralogy and geochemistry that is very important in solving some environmental problems. The objective of this study is to develop techniques of synthesizing a chalcomenite analog and to study its speciation and properties. The synthesis was performed by boiling-dry aqueous Cu2(CO3)(OH)2 solutions and selenium acid H2SeO3. The obtained samples were identified by X-ray diffraction and IR spectroscopy. The Eh-pH diagrams were calculated using the Geochemist’s Workbench (GMB 7.0) software package. The database comprises the thermodynamic parameters of 46 elements, 47 main particles, 48 redox pairs, 551 particles in solution, 624 solid phases, and 10 gases. The Eh-pH diagrams have been calculated for the Cu-Se-CO2-H2O system for the average content of these elements in underground waters and their contents in acidic waters in the oxidation zones of sulfide deposits. The formation of chalcomenite and malachite under near-surface conditions is discussed.  相似文献   
29.
Lammerite-β, Cu3(AsO4)2, occurs as a product of the post-eruption fumarole activity of the second cinder cone of the North breach of the Great Fissure Tolbachik eruption in 1975–1976, Kamchatka Peninsula, Russia. Sporadic light to dark green splinter-shaped grains are no larger than 0.15 mm in size. Cleavage is not observed. The mechanical admixture of finely dispersed hematite forms condensed brownish spots that are occasionally zonal relative to the contours of the lammerite-β grains. Associated minerals are euchlorine, piypite, alumoklyuchevskite, alarsite, and lammerite. Lammerite-β is brittle and transparent and has vitreous luster. The calculated density is 5.06 g/cm3. The mineral is not pleochroic, biaxial (+), α = 1.887(5), β = 1.936(5), γ = 2.01(1), 2V(calc.) = 80.9°; dispersion is strong, r < v. The new mineral is monoclinic, the space group is P21/c, a = 6.306(1), b = 8.643(1), c = 11.310(1) Å, β = 92.26(1)°, V = 615.9(1) Å3, and Z = 4. Characteristic reflections in the X-ray powder diffraction pattern (I-d-hkl) are 100-2.83-004, 10-5.65-002, and 10-4.32-020. The chemical composition is as follows, wt %: 51.30 CuO, 0.32 ZnO, 49.12 As2O3, with a total of 100.74 wt %. The empirical and idealized formulas are Cu3.00Zn0.02As1.99O8 and Cu3(AsO4)2, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号