首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25863篇
  免费   257篇
  国内免费   933篇
测绘学   1442篇
大气科学   2080篇
地球物理   4891篇
地质学   12102篇
海洋学   1154篇
天文学   1820篇
综合类   2163篇
自然地理   1401篇
  2023年   6篇
  2021年   18篇
  2020年   34篇
  2019年   27篇
  2018年   4784篇
  2017年   4071篇
  2016年   2617篇
  2015年   271篇
  2014年   127篇
  2013年   103篇
  2012年   1037篇
  2011年   2814篇
  2010年   2080篇
  2009年   2388篇
  2008年   1953篇
  2007年   2400篇
  2006年   135篇
  2005年   263篇
  2004年   457篇
  2003年   463篇
  2002年   293篇
  2001年   76篇
  2000年   80篇
  1999年   35篇
  1998年   52篇
  1997年   21篇
  1996年   29篇
  1995年   22篇
  1994年   26篇
  1993年   20篇
  1992年   17篇
  1991年   12篇
  1990年   19篇
  1989年   17篇
  1988年   13篇
  1987年   11篇
  1986年   16篇
  1985年   19篇
  1984年   21篇
  1983年   14篇
  1982年   29篇
  1981年   38篇
  1980年   26篇
  1979年   13篇
  1978年   13篇
  1977年   10篇
  1976年   16篇
  1975年   5篇
  1974年   5篇
  1973年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
The upper layer (above 140 m depth) temperature in the western Philippine Sea near Taiwan was sampled using a coastal monitoring buoy (CMB) with 15 attached thermistors during July 28–August 7, 2005. The data were collected every 10 min at 1, 3, 5, 10, 15, and 20 m using the CMB sensors, and every 15 sec at 15 different depths between 25 m and 140 m. Internal waves and solitons were identified from the time-depth plot of the temperature field. Without the internal waves and solitons, the power spectra, structure functions, and singular measures (representing the intermittency) of temperature field satisfy the power law with multi-scale characteristics at all depths. The internal waves do not change the basic characteristics of the multifractal structure. However, the internal solitons change the power exponent of the power spectra drastically, especially in the low wave number domain; they also break down the power law of the structure function and increase the intermittency parameter. The physical mechanisms causing these different effects need to be explored further.  相似文献   
82.
Following our previous study (Sugimoto and Hanawa, 2005b), we further investigate the reason why reemergence of winter sea surface temperature anomalies does not occur in the North Pacific eastern subtropical mode water (NPESTMW) area, despite its occurrence in the North Pacific subtropical mode water and North Pacific central mode water areas. We use vertical temperature and salinity profiles of the World Ocean Circulation Experiment Hydrographic Program and Argo floats with high vertical and temporal resolution, together with heat flux data through the sea surface. We point out first that one of the causes for non-occurrence of reemergence is that the thickness of NPESTMW is very thin. In addition to this basic cause, two major reasons are found: a vigorous mixing in the lower portion of NPESTMW and less heat input from the atmosphere in the warming season. Since, in the lower portion of NPESTMW and deeper, the stratification is favorable for salt-finger type convection to occur compared with the other mode water areas, vigorous mixing takes place. This is confirmed by both a large Turner Angle there and the existence of staircase structures in vertical temperature and salinity profiles. From the viewpoint of heat input, the NPESTMW area gradually gains heat in the warming season compared with other mode water areas. As a result, NPESTMW cannot be capped so quickly by the shallow summer mixed layer, and water properties of NPESTMW are to be gradually modified, even in the upper portion.  相似文献   
83.
A geomorphological and statistical analysis of slope canyons from the northern KwaZulu-Natal continental margin is documented and compared with submarine canyons from the Atlantic margin of the USA. The northern KwaZulu-Natal margin is characterized by increasing upslope relief, concave slope-gradient profiles and features related to upslope growth of the canyon forms. Discounting slope-gradient profile, this morphology is strikingly similar to canyon systems of the New Jersey slope. Several phases of canyon incision indicate that downslope erosion is also an important factor in the evolution of the northern KwaZulu-Natal canyon systems. Despite the strong similarities between the northern KwaZulu-Natal and New Jersey slope-canyon systems, key differences are evident: (1) the concavity of the northern KwaZulu-Natal slope, contrasting with the ∼linear New Jersey slope; (2) the relative isolation of the northern KwaZulu-Natal canyons, rather than the dense clustering of the New Jersey canyons; and (3) the absence of strongly shelf-breaching canyons along the northern KwaZulu-Natal margin. In comparison with the New Jersey margin, we surmise a more youthful stage of canyon evolution, a result of either the canyons themselves being younger or the formative processes being less active. Less complicated patterns of erosion resulting from reduced sediment availability have developed in northern KwaZulu-Natal. The reduction in slope concavity on the New Jersey margin may be the result of grading of the upper slope by intensive headward erosion, a process more subdued—or less evident—on the KwaZulu-Natal margin.  相似文献   
84.
Jellyfish patch formation is investigated by conducting a drifter experiment combined with aerial photography of a sustained patch of the moon jellyfish in Hokezu Bay, Japan. Jellyfish patches are aggregations of individuals that are caused by a combination of swimming (active influence) and advection by currents (passive influence). The drifter experiment involved the injection of 49 drifters around a distinct surface patch of jellyfish within an area of approximately 300 m × 300 m. The drifters’ motion, caused only by the passive influence, was recorded in a series of 38 aerial photographs taken over approximately 1 h. The ambient uniform current field larger than the patch scale was estimated from the movement of the centroid position of drifters, while the distribution of horizontal divergence and relative vorticity around the patch was estimated from the time-derivative in areas of triangles formed by the drifters. The centroid positions of both drifters and patches moved stably toward the bay head at different speeds. The difference vector between the patch and drifter centroids was directed to the sun, and was opposite to the ambient current. The distributions of vorticity and divergence around patches exhibited inhomogeneity within the patch scale, and the drifters in this nonuniform current field aggregated near the convergence area within 1 h. The results suggest that horizontal patch formation is predominantly influenced by passive factors at the surface of Hokezu Bay. Furthermore, the upward swimming against downwelling may make sustained patch in surface layer.  相似文献   
85.
The Woodlark triple junction region, a topographically and structurally complex triangular area of Quaternary age, lies east of Simbo Ridge and southwest of the New Georgia island group, Solomon Islands, at the junction of the Pacific, Australian and Solomon Sea plates. SeaMARC II side-scan imagery and bathymetry in conjunction with seismic reflection profiles, 3.5 kHz records, and petrologic, magnetic and gravity data show that the active Woodlark spreading centre does not extend into this region.South of the triple junction region, the Woodlark spreading centre reoriented at about 2 Ma into a series of short ESE-trending segments. These segments continued to spread until about 0.5 Ma, when the lithosphere on their northern sides was transferred from the Solomon Sea plate to the Australian plate. Simultaneously the Simbo transform propagated northwards along the western side of the transferred lithosphere, forming a trench-trench-transform triple junction located NNW of Simbo island and a new leaky plate boundary segment that built Simbo Ridge.As the Pacific plate approached, the area east of northern Simbo Ridge was tilted northwards, sheared by dominantly right-lateral faults, elevated, and intruded by arc-related magmas to form Ghizo Ridge. Calc-alkalic magmas sourced beneath the Pacific plate built three large strato-volcanic edifices on the subducting Australian plate: Simbo at the northern end of Simbo Ridge, and Kana Keoki and Coleman seamounts on an extensional fracture adjoining the SE end of Ghizo Ridge.A sediment drape, supplied in part from Simbo and Kana Keoki volcanoes, mantles the east-facing slopes of northern Simbo and Ghizo Ridges and passes distally into sediment ponded in the trench adjoining the Pacific plate. As a consequence of plate convergence, parts of the sediment drape and pond are presently being deformed, and faults are dismembering Kana Keoki and Coleman seamounts.The Woodlark system differs from other modern or Tertiary ridge subduction systems, which show wide variation in character and behaviour. Existing models describing the consequences of ridge subduction are likely to be predictive in only a general way, and deduced rules for the behaviour of oceanic lithosphere in ridge subduction systems may not be generally applicable.  相似文献   
86.
87.
At present, the barotropic buoyant stability parameter has been derived from a vertical virtual displacement of a water parcel. The barotropic inertial stability parameter in the eccentrically cyclogeostrophic, basic current field was derived in 2003 from a horizontal cross-stream virtual displacement of a parcel. By expressing acceleration of a parcel due to a virtual displacement, which is arbitrarily sloping within a vertical section across the basic current, in terms of natural coordinates, we derived the vertical component of baroclinic buoyant stability parameter B 2 2, the horizontal component of baroclinic inertial stability parameter I 2 2, the baroclinic joint stability parameter J 2, its buoyant component B 2 and its inertial component I 2. B 2 is far greater than I 2 2, and when neglecting relative vorticity except for vertical shear, a downward convex curve of J 2 plotted against the slope of a virtual displacement follows a trend of B 2 curve. If a parcel displaces along a horizontal surface or an isopycnal surface, however, B 2 vanishes, and J 2 becomes equal to I 2. Actual parcel is apt to displace not only along the bottom slope, but also along the sea surface and an isopycnal interfacial surface, which is approximately equivalent to an isentropic surface, preferred by lateral mixing and exchange of momentum. Such actual displacement makes B 2 vanishing, and grants I 2 an important role. The present analysis of I 2 examining effects due to curvature and horizontal and vertical shear vorticities are useful in deepening our understanding of baroclinic instability in actual oceanic streams.  相似文献   
88.
89.
The distribution and geochemical composition of suspended-particulate matter (SPM) in the East China Sea (ECS) were investigated during the summer period of high continental runoff to elucidate SPM sources, distribution and cross-shelf transport. The spatial variability of SPM distribution (0.3–6.5 mg l−1) and geochemical composition (POC, Al, Si, Fe, Mn, Ca, Mg and K) in the ECS was pronounced during summer when the continental fluxes of freshwater and terrestrial materials were highest during the year. Under the influences of Changjiang runoff, Kuroshio intrusion, surface production and bottom resuspension, the distribution generally showed strong gradients decreasing seaward for both biogenic and lithogenic materials. Particulate organic carbon was enriched in surface water (mean ∼18%) due to the influence of biological productivity, and was diluted by resuspended and/or laterally-transported materials in bottom water (mean 9.4%). The abundance of lithogenic elements (Al, Si, Fe, Mn) increased toward the bottom, and the distribution correlations were highly significant. Particulate CaCO3 distribution provided evidence that the SPM of the bottom water in the northern part of the study area was likely mixed with sediments originally derived from Huanghe. A distinct benthic nepheloid layer (BNL) was present in all seaward transects of the ECS shelf. Sediment resuspension may be caused by tidal fluctuation and other forcing and be regarded as the principal agent in the formation of BNL. This BNL was likely responsible for the transport of biogenic and lithogenic particles across or along the ECS shelf. Total inventories of SPM, POC and PN are 46, 2.8 and 0.4 Tg, respectively, measured over the total area of 0.45 × 106 km2 of the ECS shelf. Their mean residence times are about 27, 13 and 11 days, respectively. The inventory of SPM in the water column was higher in the northernmost and southernmost transects and lower in the middle transects, reflecting the influences of terrestrial inputs from Changjiang and/or resuspended materials from Huanghe deposits in the north and perhaps from Minjiang and/or Taiwan’s rivers in the south. The distribution and transport patterns of SPM and geochemical elements strongly indicate that continental sources and cross-shelf transport modulate ECS particulate matter in summer.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号