首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   10篇
  国内免费   8篇
测绘学   2篇
大气科学   21篇
地球物理   42篇
地质学   114篇
海洋学   23篇
天文学   30篇
自然地理   25篇
  2023年   3篇
  2022年   1篇
  2021年   4篇
  2020年   12篇
  2019年   7篇
  2018年   10篇
  2017年   8篇
  2016年   8篇
  2015年   4篇
  2014年   7篇
  2013年   23篇
  2012年   11篇
  2011年   24篇
  2010年   10篇
  2009年   20篇
  2008年   8篇
  2007年   10篇
  2006年   12篇
  2005年   7篇
  2004年   11篇
  2003年   7篇
  2002年   7篇
  2001年   5篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1990年   2篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1969年   1篇
  1967年   2篇
排序方式: 共有257条查询结果,搜索用时 15 毫秒
91.
Tsunami deposits preserved in the geological record provide a more comprehensive understanding of their patterns of frequency and intensity over longer timescales; but recognizing tsunami deposits can prove challenging due to post-depositional changes, lack of contrast between the deposits and surrounding sedimentary layers, and differentiating between tsunami and storm deposition. Modern baseline studies address these challenges by providing insight into modern spatial distributions that can be compared with palaeotsunami deposits. This study documents the spatial fingerprint of grain size and foraminifera from Hasunuma Beach and the Kujukuri shelf to provide a basis from which tsunami deposits can be interpreted. At Hasunuma Beach, approximately 50 km east of Tokyo, the spatial distribution of three common proxies (foraminiferal taxonomy, foraminiferal taphonomy and sediment grain size) for tsunami identification were mapped and clustered using Partitioning Around Medoids cluster analysis. Partitioning Around Medoids cluster analysis objectively discriminated two coastal zones corresponding to onshore and offshore sample locations. Results show that onshore samples are characterized by coarser grain sizes (medium to coarse sand) and higher abundances of Pararotalia nipponica (27 to 63%) than offshore samples, which are characterized by finer grain sizes (fine to medium sand), lower abundances of Pararotalia nipponica (2 to 19%) and Ammonia parkinsoniana (0 to 10%), higher abundances of planktonics (15 to 58%) and species with fragile tests including Uvigerinella glabra. When compared to grain-size and foraminiferal taxonomy, foraminiferal taphonomy; i.e. surface condition of foraminifera, a proxy not commonly used to identify tsunami deposits, was most effective in discriminating modern coastal zones (identified supratidal, intertidal and offshore environments) and determining sediment provenance for tsunami deposits at Kujukuri. This modern baseline study assists the interpretation of tsunami deposits in the geological record because it provides a basis for sediment provenance to be determined.  相似文献   
92.
Any progress in our understanding of low-temperature mineral assemblages and of quantitative physico-chemical modeling of stability conditions of mineral phases, especially those containing toxic elements like selenium, strongly depends on the knowledge of structural and thermodynamic properties of coexisting mineral phases. Interrelation of crystal chemistry/structure and thermodynamic properties of selenium-containing minerals is not systematically studied so far and thus any essential generalization might be difficult, inaccurate or even impossible and erroneous. Disagreement even exists regarding the crystal chemistry of some natural and synthetic selenium-containing phases. Hence, a systematic study was performed by synthesizing ferric selenite hydrates and subsequent thermal analysis to examine the thermal stability of synthetic analogues of the natural hydrous ferric selenite mandarinoite and its dehydration and dissociation to unravel controversial issues regarding the crystal chemistry. Dehydration of synthesized analogues of mandarinoite starts at 56–87?°C and ends at 226–237?°C. The dehydration happens in two stages and two possible schemes of dehydration exist: (a) mandarinoite loses three molecules of water in the first stage of the dehydration (up to 180?°C) and the remaining two molecules of water will be lost in the second stage (>180?°C) or (b) four molecules of water will be lost in the first stage up to 180?°C and the last molecule of water will be lost at a temperature above 180?°C. Based on XRD measurements and thermal analyses we were able to deduce Fe2(SeO3)3·(6-x)H2O (x?=?0.0–1.0) as formula of the hydrous ferric selenite mandarinoite. The total amount of water apparently affects the crystallinity, and possibly the stability of crystals: the less the x value, the higher crystallinity could be expected.  相似文献   
93.
Population dynamics of crayfish (Paranephrops planifrons White) in streams draining native forest and pastoral catchments, Waikato, New Zealand, were investigated from September 1996 to July 1998. Crayfish densities were generally greater in native forest streams because of high recruitment over summer, but varied greatly between streams in both land uses. Peak densities in summer were 9 crayfish m‐2 in native forest and 6 crayfish m‐2 in pasture streams, but peak biomass in summer was much greater in pasture streams. Mark‐recapture data showed that crayfish, particularly juveniles, in pasture streams grew faster than in native forest streams, through both greater moult frequency and larger moult increments. Females reached reproductive size at c. 20 mm orbit‐carapace length (OCL) after their first year in pasture streams, but after 2 years in native forest streams. Annual degree days >10°C appeared to explain the differences in the timing of life cycles. Estimates of annual crayfish production (range = 0.8–3.4 g dry weight m‐2 year–1) were similar in both land uses, and P/B ratios were between 0.95 and 1.2. Despite deforestation and conversion to pasture, crayfish in these Waikato hill‐country streams have maintained similar levels of annual production to those in native forest streams, although juvenile growth rates have increased and longevity has decreased.  相似文献   
94.
Modern Tethyan, Mediterranean, and Pacific analogues are considered for several Appalachian, Caledonian, and Variscan terranes (Carolina, West and East Avalonia, Oaxaquia, Chortis, Maya, Suwannee, and Cadomia) that originated along the northern margin of Neoproterozoic Gondwana. These terranes record a protracted geological history that includes: (1) 1 Ga (Carolina, Avalonia, Oaxaquia, Chortis, and Suwannee) or 2 Ga (Cadomia) basement; (2) 750–600 Ma arc magmatism that diachronously switched to rift magmatism between 590 and 540 Ma, accompanied by development of rift basins and core complexes, in the absence of collisional orogenesis; (3) latest Neoproterozoic–Cambrian separation of Avalonia and Carolina from Gondwana leading to faunal endemism and the development of bordering passive margins; (4) Ordovician transport of Avalonia and Carolina across Iapetus terminating in Late Ordovician–Early Silurian accretion to the eastern Laurentian margin followed by dispersion along this margin; (5) Siluro-Devonian transfer of Cadomia across the Rheic Ocean; and (6) Permo-Carboniferous transfer of Oaxaquia, Chortis, Maya, and Suwannee during the amalgamation of Pangea. Three potential models are provided by more recent tectonic analogues: (1) an “accordion” model based on the orthogonal opening and closing of Alpine Tethys and the Mediterranean; (2) a “bulldozer” model based on forward-modelling of Australia during which oceanic plateaus are dispersed along the Australian plate margin; and (3) a “Baja” model based on the Pacific margin of North America where the diachronous replacement of subduction by transform faulting as a result of ridge–trench collision has been followed by rifting and the transfer of Baja California to the Pacific Plate. Future transport and accretion along the western Laurentian margin may mimic that of Baja British Columbia. Present geological data for Avalonia and Carolina favour a transition from a “Baja” model to a “bulldozer” model. By analogy with the eastern Pacific, we name the oceanic plates off northern Gondwana: Merlin (≡Farallon), Morgana (≡Pacific), and Mordred (≡Kula). If Neoproterozoic subduction was towards Gondwana, application of this combined model requires a total rotation of East Avalonia and Carolina through 180° either during separation (using a western Transverse Ranges model), during accretion (using a Baja British Columbia “train wreck” model), or during dispersion (using an Australia “bulldozer” model). On the other hand, Siluro-Devonian orthogonal transfer (“accordion” model) from northern Africa to southern Laurussia followed by a Carboniferous “Baja” model appears to best fit the existing data for Cadomia. Finally, Oaxaquia, Chortis, Maya, and Suwannee appear to have been transported along the margin of Gondwana until it collided with southern Laurentia on whose margin they were stranded following the breakup of Pangea. Forward modeling of a closing Mediterranean followed by breakup on the African margin may provide a modern analogue. These actualistic models differ in their dictates on the initial distribution of the peri-Gondwanan terranes and can be tested by comparing features of the modern analogues with their ancient tectonic counterparts.  相似文献   
95.
Discrete-fracture and dual-porosity models are infrequently used to simulate solute transport through fractured unconsolidated deposits, despite their more common application in fractured rock where distinct flow regimes are hypothesized. In this study, we apply four fracture transport models--the mobile-immobile model (MIM), parallel-plate discrete-fracture model (PDFM), and stochastic and deterministic discrete-fracture models (DFMs)--to demonstrate their utility for simulating solute transport through fractured till. Model results were compared to breakthrough curves (BTCs) for the conservative tracers potassium bromide (KBr), pentafluorobenzoic acid (PFBA), and 1,4-piperazinediethanesulfonic acid (PIPES) in a large-diameter column of fractured till. Input parameters were determined from independent field and laboratory methods. Predictions of Br BTCs were not significantly different among models; however, the stochastic and deterministic DFMs were more accurate than the MIM or PDFM when predicting PFBA and PIPES BTCs. DFMs may be more applicable than the MIM for tracers with small effective diffusion coefficients (De) or for short timescales due to differences in how these models simulate diffusion or incorporate heterogeneities by their fracture networks. At large scales of investigation, the more computationally efficient MIM and PDFM may be more practical to implement than the three-dimensional DFMs, or a combination of model approaches could be employed. Regardless of the modeling approach used, fractures should be incorporated routinely into solute transport models in glaciated terrain.  相似文献   
96.
Orogens at convergent margins must meet the energetic requirements necessary to lift rocks against gravity, allow for frictional sliding along basal detachments and accommodate internal deformation processes. The combination of critical taper and kinematic wedge theories predicts the partitioning between these energy sinks as a function of both fault and crustal strengths. Integrating contemporary estimates of both crustal pore fluid pressures and the coefficient of friction on major faults, we find that work associated with internal deformation processes is the dominant energy sink in the western Taiwan orogenic wedge. These processes consume 54% of the total work budget, while the dissipation rates associated with frictional sliding on the basal detachment and lifting rocks against gravity are lower, requiring only 11% and 35% respectively. These results suggest a mechanical dichotomy in orogenic wedges where the faulting dominates the kinematic deformation budget, but internal distributed deformation processes dominate the energy budget.  相似文献   
97.
Soil bulk density (ρb) is commonly treated as static in studies of land surface dynamics. Magnitudes of errors associated with this assumption are largely unknown. Our objectives were to (a) quantify ρb effects on soil hydrologic and thermal properties and (b) evaluate effects of ρb on surface energy balance and heat and water transfer. We evaluated 6 soil properties, volumetric heat capacity, thermal conductivity, soil thermal diffusivity, water retention characteristics, hydraulic conductivity, and vapour diffusivity, over a range of ρb, using a combination of 6 models. Thermal conductivity, water retention, hydraulic conductivity, and vapour diffusivity were most sensitive to ρb, each changing by fractions greater than the associated fractional changes in ρb. A 10% change in ρb led to 10–11% change in thermal conductivity, 6–11% change in saturated and residual water content, 49–54% change in saturated hydraulic conductivity, and 80% change in vapour diffusivity. Subsequently, 3 field seasons were simulated with a numerical model (HYDRUS‐1D) for a range of ρb values. When ρb increased 25% (from 1.2 to 1.5 Mg m?3), soil temperature variation decreased by 2.1 °C in shallow layers and increased by 1 °C in subsurface layers. Surface water content differed by 0.02 m3 m?3 for various ρb values during drying events but differences mostly disappeared in the subsurface. Matric potential varied by >100 m of water. Surface energy balance showed clear trends with ρb. Latent heat flux decreased 6%, sensible heat flux increased 9%, and magnitude of ground heat flux varied by 18% (with a 25% ρb increase). Transient ρb impacted surface conditions and fluxes, and clearly, it warrants consideration in field and modelling investigations.  相似文献   
98.
In‐channel sand mining by dredge removes large quantities of bed sediment and alters channel morphodynamic processes. While the reach‐scale impacts of dredging are well documented, the effects of the dredged borrow pit on the local flow and sediment transport are poorly understood. These local effects are important because they control the post‐dredge evolution of the borrow pit, setting the pit lifespan and affecting reach‐scale channel morphology. This study documents the observed morphological evolution of a large (1·46 million m3) borrow pit mined on a lateral sandbar in the lower Mississippi River using a time‐series of multibeam bathymetric surveys. During the 2·5 year time‐series, 53% of the initial pit volume infilled with sediment, decreasing pit depth by an average of 0·88 m yr?1. To explore the controls of the observed infilling, a morphodynamic model (Delft3D) was used to simulate flow and sediment transport within the affected river reach. The model indicated that infilling rates were primarily related to the riverine sediment supply and pit geometry. The pit depth and length influenced the predicted magnitude of the pit bed shear stress relative to its pre‐dredged value, i.e. the bed‐stress reduction ratio (R*), a metric that was correlated with the magnitude and spatial distribution of infilling. A one‐dimensional reduced‐complexity model was derived using predicted sediment supply and R* to simulate patterns of pit infilling. This simplified model of borrow‐pit evolution was able to closely approximate the amount and patterns of sediment deposition during the study period. Additional model experiments indicate that, for a borrow pit of a set volume, creating deep, longitudinally‐shorter borrow pits significantly increased infilling rates relative to elongated pits. Study results provide insight into the resilience of alluvial river channels after a disturbance and the sustainability of sand mining as a sediment source for coastal restoration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
99.
The bait-attending fauna of the abyssal-hadal transition zone of the Kermadec Trench, SW Pacific Ocean (4329-7966 m), was investigated using a baited camera and a trap lander. The abyssal stations (4329-6007 m) revealed a typical scavenging fish community comprising macrourids and synaphobranchid eels, as well as natantian decapods. At the hadal depths of 7199 and 7561 m, the endemic liparid Notoliparis kermadecensis was observed aggregating at the bait reaching surprisingly high numbers of 5 and 13, respectively. A total of 3183 invertebrate samples were collected (mean deployment time=16 h) of which 97.8% were of the order Amphipoda (nine families, 16 species). Ten of the amphipod species represent new distributional records for the Kermadec Trench and the New Zealand Exclusive Economic Zone; this includes the shallowest known record of the endemic hadal amphipod Hirondellea dubia (6000, 6007 m). Using amphipods to statistically examine the compositional change across the abyssal-hadal boundary, an ecotone between depths <6007 and >6890 m was found, indicating that there is an ecologically distinct bait-attending fauna in this trench.  相似文献   
100.
ABSTRACT

Cost surfaces are a crucial aspect of route optimization and least cost path (LCP) calculations and are used in awide range of disciplines including computer science, landscape ecology, and energy-infrastructure modeling. Linear features present akey weakness to traditional routing calculations along cost surfaces because they cannot identify whether moving from acell to its adjacent neighbors constitutes crossing alinear barrier (increased cost) or following acorridor (reduced cost). Following and avoiding linear features can drastically change predicted routes. We introduce an approach to address this adjacency issue using asearch kernel that identifies these critical barriers and corridors. We have built this approach into anew Java-based open-source software package– CostMAP (cost surface multi-layer aggregation program)– which calculates cost surfaces and cost networks using the search kernel. CostMAP allows users to input multiple GIS data layers and to set weights and rules for developing aweighted-cost network. We compare CostMAP performance with traditional cost surface approaches and show significant performance gains– both following corridors and avoiding barriers– by modeling the movement of alarge terrestrial animal– the Baird’s Tapir (Tapirus bairdii)– in amovement ecology framework and by modeling pipeline routing for carbon capture and storage (CCS).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号