首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   1篇
  国内免费   1篇
大气科学   1篇
地球物理   10篇
地质学   55篇
海洋学   3篇
天文学   5篇
自然地理   1篇
  2020年   2篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2016年   8篇
  2015年   1篇
  2014年   5篇
  2013年   1篇
  2012年   5篇
  2011年   7篇
  2010年   4篇
  2009年   7篇
  2008年   7篇
  2007年   4篇
  2006年   4篇
  2003年   1篇
  2001年   1篇
  2000年   2篇
  1983年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有75条查询结果,搜索用时 46 毫秒
41.
A technique of net sampling of zooplankton at night in the Kandalaksha and Dvinskii Bays and during the full tide in the Onezhskii Bay of the White Sea allowed us to obtain “clean” samples without considerable admixtures of terrigenous suspension. The absence of elements-indicators of the terrigenous suspension (Al, Ti, and Zr) in the EDX spectra allows concluding that the ash composition of the tested samples is defined by the constitutional elements comprising the organic matter and integument (chitin, shells) of planktonic organisms. A quantitative assessment of the accumulation of a large group of chemical elements (approximately 40) by zooplankton based on a complex of modern physical methods of analysis is presented. The values of the coefficient of the biological accumulation of the elements (Kb) calculated for the organic matter and the enrichment factors (EF) relative to the Clarke concentrations in the shale are in general determined by the mobility of the chemical elements in the aqueous solution, which is confirmed by the calculated chemical speciation of the elements in the inorganic subsystem of the surface waters of Onezhskii Bay.  相似文献   
42.
43.
Diamond crystallization in multicomponent melts of variable composition is studied. The melt carbonates are K2CO3, CaCO3?MgCO3, and K-Na-Ca-Mg-Fe-carbonatites, and the melt silicates are model peridotite (60 wt.% olivine, 16 wt.% orthopyroxene, 12 wt.% clinopyroxene, and 12 wt.% garnet) and eclogite (50 wt.% garnet and 50 wt.% clinopyroxene). In the experiments carried out under the PT-conditions of diamond stability, the carbonate-silicate melts behave like completely miscible liquid phases. The concentration barriers of diamond nucleation (CBDN) in the melts with variable proportions of silicates and carbonates have been determined at 8.5 GPa. In the system peridotite–K2CO3–CaCO3?MgCO3–carbonatite they correspond to 30, 25, and 30 wt.% silicates, respectively, and in the analogous eclogite–carbonate system, 45, 30, and 35 wt.%. In the silicate-carbonate melts with higher silicate contents seed diamond growth occurs, which is accompanied by the crystallization of thermodynamically unstable graphite phase. In the experiments with melts compositionally corresponding to the CBDN at 7.0 GPa and 1200–1700 °C, a full set of silicate minerals of peridotite (olivine, orthopyroxene, clinopyroxene, garnet) and eclogite (garnet, clinopyroxene) parageneses was obtained. The minerals occur as syngenetic inclusions in natural diamonds; moreover, the garnets contain an impurity of Na, and the pyroxenes, K. The experimental data indicate that peridotite-carbonate and eclogite-carbonate melts are highly effective for the formation of diamond (or unstable graphite) together with syngenetic minerals and melts, which agrees with the carbonate-silicate (carbonatite) model for the mantle diamond formation.  相似文献   
44.
Seminsky  K. Zh.  Bobrov  A. A.  Demberel  S. 《Doklady Earth Sciences》2019,487(2):890-893
Doklady Earth Sciences - The relationship between radon and the tectonic activity of faults for two geodynamically active regions of Central Mongolia is shown with account for the influence of...  相似文献   
45.
It is found that from the viewpoint of the magnetic field configuration there are only two types of solar wind: streams with closed field lines (flare-induced streams) and streams with open field lines (M-streams of various velocity and lifetime, and quiet solar wind). We emphasize that in the absence of flare-induced streams the Earth's magnetosphere is, as a rule, circum-flown not by a quiet but by a variably disturbed solar wind—M-streams. An important feature of M-streams is that within a given interplanetary magnetic field sector the sign (+ or −) of the stream magnetic field almost always coincides with that of the sector. These facts lead to the conclusion that M-streams are mainly responsible for the sector structure.  相似文献   
46.
Doklady Earth Sciences - The new results of experimental study of the Na2MgSiO4–Mg2SiO4 section of the SiO2–MgO–Na2O model system at 22–24 GPa and 1600–1900°C are...  相似文献   
47.
金刚石母岩可以是榴辉岩、辉石岩、橄榄岩等多种岩石,它们与金刚石都是在地幔深处形成的,并上侵最终固结于地壳中。母岩中的金刚石等矿物在地壳中又发生准稳定生长。地壳中金伯利岩和钾镁煌斑岩岩浆作用对金刚石母岩侵入体进行改造,使原生金刚石发生破碎、溶解、再生长等一系列变化,并形成巨晶、劣质金刚石和黑金刚石等新类型,这些现象不是在金刚石母岩形成之初发生的。  相似文献   
48.
Crystallization of garnet in high-chromium restite formed under the conditions of partial melting in the spinel facies and subsequently subducted into the garnet depth facies was studied experimentally in the MgO–Al2O3–Cr2O3–SiO2 system. The crystallization of garnet and the dependence of its composition on the temperature and bulk composition of the system with low Al concentration were studied as well. Experiments in the knorringite–majorite–pyrope system with 5, 10, and 20 mol % Prp were carried out at 7 GPa. The phase associations for the starting composition of pure knorringite Mg3Cr2Si3O12 included chromiumbearing enstatite MgSiO3 (up to 3.2 wt % Cr2O3) and eskolaite Cr2O3. Addition of Al resulted in crystallization of high-chromium majoritic garnet. The portion of garnet in the samples always exceeded the concentration of pyrope in the starting composition owing to the formation of the complex majorite–knorringite–pyrope series of solid solutions. With increasing content of pyrope (from 5 to 20 mol %) and increasing temperature, the modal concentration of garnet increased significantly (from 6–12 to 22–37%). The garnet was characterized by high concentrations of the pyrope (23–80 mol %) and knorringite (22–70 mol %) components. The excess of Si (>3 f.u.) with decreasing Cr concentration provided evidence for the contribution of the majorite–knorringite trend to the variation in garnet composition. On the basis of the natural data, most of the garnets composing xenoliths of ultrabasic rocks in kimberlites and occurring as inclusions in diamonds are low-chromium; i.e., their protolith was not subjected to partial melting, at least in the spinel depth facies.  相似文献   
49.
50.
Based on experimental and mineralogical data, the model of mantle carbonate-silicate (carbonatite) melts as dominating parental media for natural diamonds was substantiated. It was demonstrated that the compositions of silicate constituents of parental melts were variable and saturated with respect to mantle rocks, namely pyrope peridotite, garnet pyroxenite, and eclogite. Based on concentration contributions and role in diamond genesis, major (carbonate and silicate) and minor (admixture) components were distinguished. The latter components may be both soluble (oxides, phosphates, chlorides, carbon dioxide, and water) and insoluble (sulfides, metals, and carbides) in silicate-carbonate melts. This paper presents the results of a study of diamond crystallization in multicomponent melts of variable composition with carbonate components (K2CO3, CaCO3 · MgCO3, and K-Na-Ca-Mg-Fe carbonatite) and silicate components represented by model peridotite (60 wt % olivine, 16 wt % orthopyroxene, 12 wt % clinopyroxene, and 12 wt % garnet) and eclogite (50 wt % garnet and 50 wt % clinopyroxene). Carbonate-silicate melts behave like completely miscible liquid phases in experiments performed under the P-T conditions of diamond stability. The concentration barriers of diamond nucleation (CBDN) in melts with variable proportions of silicates and carbonates were determined at 8.5 GPa. In the peridotite system with K2CO3, CaCO3 · MgCO3, and carbonatite, they correspond to 30, 25, and 30 wt % silicates, respectively, and in the eclogite system, the CBDN is shifted to 45, 30, and 35 wt % silicates. In the silicate-carbonate melts with higher silicate contents, diamond grows on seeds, which is accompanied by the crystallization of thermodynamically unstable graphite. At P = 7.0 GPa and T = 1200−1800°C, we studied and constructed phase diagrams for the multicomponent peridotite-carbonate and eclogite-carbonate systems as a physicochemical basis for revealing the syngenetic relationships between diamond and its silicate (olivine, ortho- and clinopyroxene, and garnet) and carbonate (aragonite and magnesite) inclusions depending on the physicochemical conditions of growth media. The results obtained allowed us to reconstruct the evolution of diamond-forming systems. The experiments revealed similarity between the compositions of synthetic silicate minerals and inclusions in natural diamonds (high concentrations of Na in garnets and K in clinopyroxenes). It was experimentally demonstrated that the formation of Na-bearing majoritic garnets is controlled by the P-T parameters and melt alkalinity. Diamonds with inclusions of such garnets can be formed in alkalic carbonate-silicate (aluminosilicate) melts. A mechanism was suggested for sodic end-member dissolution in majoritic garnets, and garnet with the composition Na2MgSi5O12 and tetragonal symmetry was synthesized for the first time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号