首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   0篇
  国内免费   5篇
测绘学   15篇
地球物理   1篇
地质学   74篇
海洋学   1篇
综合类   2篇
自然地理   4篇
  2022年   1篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2018年   7篇
  2017年   7篇
  2016年   5篇
  2015年   8篇
  2014年   21篇
  2013年   16篇
  2012年   4篇
  2011年   6篇
  2010年   4篇
  2009年   3篇
  2007年   2篇
  2006年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
61.
62.
The main goal of this study is to produce landslide susceptibility maps of a landslide-prone area (Haraz) in Iran by using both fuzzy logic and analytical hierarchy process (AHP) models. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 78 landslides were mapped from various sources. Then, the landslide inventory was randomly split into a training dataset 70?% (55 landslides) for training the models and the remaining 30?% (23 landslides) was used for validation purpose. Twelve data layers, as the landslide conditioning factors, are exploited to detect the most susceptible areas. These factors are slope degree, aspect, plan curvature, altitude, lithology, land use, distance from rivers, distance from roads, distance from faults, stream power index, slope length, and topographic wetness index. Subsequently, landslide susceptibility maps were produced using fuzzy logic and AHP models. For verification, receiver operating characteristics curve and area under the curve approaches were used. The verification results showed that the fuzzy logic model (89.7?%) performed better than AHP (81.1?%) model for the study area. The produced susceptibility maps can be used for general land use planning and hazard mitigation purpose.  相似文献   
63.
The North-Western Coast of Egypt (NWCE) represents one of the high priority regions for future development in the country. El-Hammam area is located in the NWCE with an area of 94752 acres and is one of the main challenging regions for sustaianble development. In this study, we have used remote sensing and soil data in combination with GIS tools, for land use sustainable analysis (SLU) in El-Hammam area. The SLU was established based on various factors such as: land capability and suitability, water resources availability, economic return from water and financial return from land and water. A physiographic soil map for the study area was prepared using remote sensing and GIS. Multiple field surveys were carried out for collecting information on various soil map units (SMUs) and their profiles. Laboratory analysis for the collected samples was performed, and then the soil properties were stored as attributes in a geographical soil database linked with the SMUs. Furthermore, land capability assessment was done to define the suitable areas for agricultural production using a capability model built in ALES software. Results indicate that the area currently lacks high capability and moderate capability classes. By improving the soil properties, the soil can attain potential capability; and 55630 acres will become marginally capable. The assessment of soil physical suitability for different land use types (LUTs) were analysed in ALES software, in order to generate the most suitable areas. The results from the land suitability analysis indicated that, 17114 acres are moderately suitable for wheat and sorghum; whereas 15823 acres are moderately suitable for barley and 12752 acres are moderately suitable for maize, olive and figs. Finally, the SLU was investigated based on two scenarios; (1) the most SLU under the conditions of shortage of irrigation water: clover, barley and sorghum against figs, as the irrigation requirements for barley and sorghum are low; (2) the most sustainable land use in the conditions of irrigation availability will be wheat and maize against figs and guava. From the results it is quite evident that GIS combined with modeling approaches are powerful tools for decision making in the study area.  相似文献   
64.
Groundwater management has a prominent role in the world especially in arid and semi-arid areas which have a shortage of water, and due to this serious problem, many researchers work on that for prevention and managing the water recourses to conserve and monitor sources. DRASTIC index can be put forward for estimating of groundwater vulnerability to such pollution. The main purpose of using the groundwater vulnerability model is to map groundwater susceptibility to pollution in different areas. However, this method has been used in various areas without modification, disregarding the effects of pollution type and characteristics. Thus, this technique must be standardized and approved for Kerman plain. Vulnerability evaluation to explain areas that are more vulnerable to contamination from anthropogenic sources has become a prominent element for land use planning and tangible resource management. This contribution aims at evaluating groundwater vulnerability by applying the DRASTIC index as well as employ sensitivity analyses to evaluate the comparative prominent of the model parameters for groundwater vulnerability in Kerman plain in the southeastern part of Iran. Moreover, the potential of vulnerability to pollution is more accurately assessed by optimizing the weights of the DRASTIC parameters with the single-parameter sensitivity analysis (SPSA). The new weights were calculated. The result of the study revealed that the DRASTIC-Sensitivity analysis exhibit more efficiently than the traditional method for a nonpoint source pollution. Observation of ultimate nitrate showed the result of DRASTIC-SPSA has more accuracy. The GIS method offers an efficient environment for carrying out assessments and greater capabilities for dealing with a huge quantity of spatial data.  相似文献   
65.
Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia   总被引:15,自引:0,他引:15  
This paper deals with landslide hazards and risk analysis of Penang Island, Malaysia using Geographic Information System (GIS) and remote sensing data. Landslide locations in the study area were identified from interpretations of aerial photographs and field surveys. Topographical/geological data and satellite images were collected and processed using GIS and image processing tools. There are ten landslide inducing parameters which are considered for landslide hazard analysis. These parameters are topographic slope, aspect, curvature and distance from drainage, all derived from the topographic database; geology and distance from lineament, derived from the geologic database; landuse from Landsat satellite images; soil from the soil database; precipitation amount, derived from the rainfall database; and the vegetation index value from SPOT satellite images. Landslide susceptibility was analyzed using landslide-occurrence factors employing the probability-frequency ratio model. The results of the analysis were verified using the landslide location data and compared with the probabilistic model. The accuracy observed was 80.03%. The qualitative landslide hazard analysis was carried out using the frequency ratio model through the map overlay analysis in GIS environment. The accuracy of hazard map was 86.41%. Further, risk analysis was done by studying the landslide hazard map and damageable objects at risk. This information could be used to estimate the risk to population, property and existing infrastructure like transportation network.  相似文献   
66.
The aim of this study is to evaluate the landslide hazards at Selangor area, Malaysia, using Geographic Information System (GIS) and Remote Sensing. Landslide locations of the study area were identified from aerial photograph interpretation and field survey. Topographical maps, geological data, and satellite images were collected, processed, and constructed into a spatial database in a GIS platform. The factors chosen that influence landslide occurrence were: slope, aspect, curvature, distance from drainage, lithology, distance from lineaments, land cover, vegetation index, and precipitation distribution. Landslide hazardous areas were analyzed and mapped using the landslide-occurrence factors by frequency ratio and logistic regression models. The results of the analysis were verified using the landslide location data and compared with probability model. The comparison results showed that the frequency ratio model (accuracy is 93.04%) is better in prediction than logistic regression (accuracy is 90.34%) model.  相似文献   
67.
Preparation of landslide susceptibility maps is considered as the first important step in landslide risk assessments, but these maps are accepted as an end product that can be used for land use planning. The main objective of this study is to explore some new state-of-the-art sophisticated machine learning techniques and introduce a framework for training and validation of shallow landslide susceptibility models by using the latest statistical methods. The Son La hydropower basin (Vietnam) was selected as a case study. First, a landslide inventory map was constructed using the historical landslide locations from two national projects in Vietnam. A total of 12 landslide conditioning factors were then constructed from various data sources. Landslide locations were randomly split into a ratio of 70:30 for training and validating the models. To choose the best subset of conditioning factors, predictive ability of the factors were assessed using the Information Gain Ratio with 10-fold cross-validation technique. Factors with null predictive ability were removed to optimize the models. Subsequently, five landslide models were built using support vector machines (SVM), multi-layer perceptron neural networks (MLP Neural Nets), radial basis function neural networks (RBF Neural Nets), kernel logistic regression (KLR), and logistic model trees (LMT). The resulting models were validated and compared using the receive operating characteristic (ROC), Kappa index, and several statistical evaluation measures. Additionally, Friedman and Wilcoxon signed-rank tests were applied to confirm significant statistical differences among the five machine learning models employed in this study. Overall, the MLP Neural Nets model has the highest prediction capability (90.2 %), followed by the SVM model (88.7 %) and the KLR model (87.9 %), the RBF Neural Nets model (87.1 %), and the LMT model (86.1 %). Results revealed that both the KLR and the LMT models showed promising methods for shallow landslide susceptibility mapping. The result from this study demonstrates the benefit of selecting the optimal machine learning techniques with proper conditioning selection method in shallow landslide susceptibility mapping.  相似文献   
68.
69.
Multi-scenario Rockfall Hazard Assessment Using LiDAR Data and GIS   总被引:1,自引:0,他引:1  
Transportation corridors that pass through mountainous or hilly areas are prone to rockfall hazard. Rockfall incidents in such areas can cause human fatalities and damage to properties in addition to transportation interruptions. In Malaysia, the North–South Expressway is the most significant expressway that operates as the backbone of the peninsula. A portion of this expressway in Jelapang was chosen as the site of rockfall hazard assessment in multiple scenarios. Light detection and ranging techniques are indispensable in capturing high-resolution digital elevation models related to geohazard studies. An airborne laser scanner was used to create a high-density point cloud of the study area. The use of 3D rockfall process modeling in combination with geographic information system (GIS) is a beneficial tool in rockfall hazard studies. In this study, a 3D rockfall model integrated into GIS was used to derive rockfall trajectories and velocity associated with them in multiple scenarios based on a range of mechanical parameter values (coefficients of restitution and friction angle). Rockfall characteristics in terms of frequency, height, and energy were determined through raster modeling. Analytic hierarchy process (AHP) was used to compute the weight of each rockfall characteristic raster that affects rockfall hazard. A spatial model that considers rockfall characteristics was conducted to produce a rockfall hazard map. Moreover, a barrier location was proposed to eliminate rockfall hazard. As a result, rockfall trajectories and their characteristics were derived. The result of AHP shows that rockfall hazard was significantly influenced by rockfall energy and then by frequency and height. The areas at risk were delineated and the hazard percentage along the expressway was observed and demonstrated. The result also shows that with increasing mechanical parameter values, the rockfall trajectories and their characteristics, and consequently rockfall hazard, were increased. In addition, the suggested barrier effectively restrained most of the rockfall trajectories and eliminated the hazard along the expressway. This study can serve not only as a guide for a comprehensive investigation of rockfall hazard but also as a reference that decision makers can use in designing a risk mitigation method. Furthermore, this study is applicable in any rockfall study, especially in situations where mechanical parameters have no specific values.  相似文献   
70.
Investigation of rainfall–run-off modelling is an important subject to develop any available means to water supply, which maintains human life such as run-off harvesting method. This study aims to analyse and understand the rainfall–run-off relationship in a part of Babil city, Iraq. Curve number which is a function of land use, soil texture, soil moisture and land slope is used in this study. Remote sensing and GIS are used to analyse the data and to produce the run-off depth map for the study area. Then, the run-off depth is used with rainfall to investigate the relationship between them using linear correlation. This study showed a strong linear relationship between rainfall and run-off (R2 = 0.992). It indicates that in the absence of rainfall data, run-off data can be used to estimate rainfall amount. Also, the study revealed through water balance analysis that there is an average monthly change in storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号