首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   10篇
测绘学   7篇
地球物理   61篇
地质学   28篇
海洋学   7篇
天文学   21篇
综合类   1篇
自然地理   5篇
  2024年   1篇
  2022年   1篇
  2021年   3篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   7篇
  2012年   6篇
  2011年   8篇
  2010年   10篇
  2009年   6篇
  2008年   8篇
  2007年   3篇
  2006年   6篇
  2005年   8篇
  2004年   3篇
  2003年   6篇
  2002年   13篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1996年   1篇
  1994年   2篇
  1992年   1篇
  1990年   2篇
  1985年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1971年   2篇
排序方式: 共有130条查询结果,搜索用时 19 毫秒
11.
Regularities exist in fluid flows and can be represented by a set of constants. These constants are functions of the parameter of a probability distribution that exhibits resilience and stability under various flow conditions. Together, these regularities form a network and interact with each other, such that if one is known then the others can be determined from it. The regularities and their network explain the various fluid‐flow phenomena and can be used in analysis of rivers and streams. For example, they can be used as the basis to develop simple and efficient methods of discharge measurements as presented herein, which only require velocity sampling at a single point on a water surface or a few points on a single vertical. Because of their simplicity and the short time requirement, these methods can be easily automated for collecting discharge data in unsteady, high flows that are badly needed for real‐time flow forecasting and design of flood control structures, and for advancing the fundamental, scientific knowledge in hydrology. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
12.
Both laboratory experiments and numerical modelling were conducted to study the biodegradation and transport of benzene–toluene–xylenes (BTX) in a simulated semi‐confined aquifer. The factors incorporated into the numerical model include advection, hydrodynamic dispersion, adsorption, and biodegradation. The various physico‐chemical parameters required by the numerical model were measured experimentally. In the experimental portion of the study, BTX compounds were introduced into the aquifer sand. After the contaminants had been transported through the system, BTX concentrations were measured at 12 equally spaced wells. Subsequently, microorganisms obtained from the activated sludge of a sewage treatment plant and cultured in BTX mixtures were introduced into the aquifer through the 12 sampling wells. The distribution data for BTX adsorption by the aquifer sand form a nonlinear isotherm. The degree of adsorption by the sand varies, depending on the composition of the solute. The degradation time, measured from the time since the bacteria were added to the aquifer until a specific contaminant was no longer detectable, was 35–42 h for BTX. The dissolved oxygen, after degradation by BTX compounds and bacteria, was consumed by about 40–60% in the entire simulated aquifer; thus the aerobic conditions were maintained. This study provides insights for the biodegradation and transport of BTX in aquifers by numerical modelling and laboratory experiments. Experimental and numerical comparisons indicate that the results by Monod degradation kinetics are more accurate than those by the first‐order degradation kinetics. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
13.
Abstract— Neodymium, strontium, and chromium isotopic studies of the LEW86010 angrite established its absolute age and the formation interval between its crystallization and condensation of Allende CAIs from the solar nebula. Pyroxene and phosphate were found to contain ~98% of its Sm and Nd inventory. A conventional 147Sm-143Nd isochron yielded an age of 4.53 ± 0.04 Ga (2 σ) and ?143 Nd = 0.45 ± 1.1. An 146Sm-142Nd isochron gives initial 146Sm/144Sm = 0.0076 ± 0.0009 and ?143 Nd = ?2.5 ± 0.4. The Rb-Sr analyses give initial 87Sr/86Sr (I87Sr) = 0.698972 ± 8 and 0.698970 ± 18 for LEW and ADOR, respectively, relative to 87Sr/86Sr = 0.71025 for NBS987. The difference, ΔI87Sr, between I87Sr for the angrites and literature values for Allende CAIs, corresponds to ~9 Ma of growth in a solar nebula with a CI chondrite value of 87Rb/86Sr = 0.91, or ~5 Ma in a nebula with solar photospheric 87Rb/86Sr = 1.51. Excess 53Cr from extinct 53Mn (t1/2 = 3.7 Ma) in LEW86010 corresponds to initial 53Mn/55Mn = 1.44 ± 0.07 × 10?6 and closure to Cr isotopic homogenization 18.2 ± 1.7 Ma after formation of Allende inclusions, assuming initial 53Mn/55Mn = 4.4 ± 1.0 × 10?5 for the inclusions as previously reported by the Paris group (Birck and Allegre, 1988). The 146Sm/144Sm value found for LEW86010 corresponds to solar system initial (146Sm/144Sm)o = 0.0080 ± 0.0009 for crystallization 8 Ma after Allende, the difference between Pb-Pb ages of angrites and Allende, or 0.0086 ± 0.0009 for crystallization 18 Ma after Allende, using the Mn-Cr formation interval. The isotopic data are discussed in the context of a model in which an undifferentiated “chondritic” parent body formed from the solar nebula ~2 Ma after Allende CAIs and subsequently underwent differentiation accompanied by loss of volatiles. Parent bodies with Rb/Sr similar to that of CI, CM, or CO chondrites could satisfy the Cr and Sr isotopic systematics. If the angrite parent body had Rb/Sr similar to that of CV meteorites, it would have to form slightly later, ~2.6 Ma after the CAIs, to satisfy the Sr and Cr isotopic systematics.  相似文献   
14.
Periodic paddy field flooding is a major source of groundwater recharge. Many paddy fields thus are used as groundwater recharge ponds after harvesting the first crop of the summer. Following rice harvesting, paddy field surfaces may crack into fissures as a result of drainage and exposure to sunlight. Field observation indicates that applying precipitation to the paddy field can increase the rate of infiltration. To quantitatively evaluate the amount of infiltration in a cracked paddy field, this study sets up a simple soil crack model to simulate the field infiltration process. A three‐dimensional groundwater model FEMWATER is adopted to simulate water movement in the paddy field subjected to various crack conditions. Using the field and laboratory data of irrigation water requirements, soil physical properties, hydraulic conductivities and soil profiles obtained from Ten‐Chung, FEMWATER simulates the water movement in the dry cracked paddy. Simulation results show that if the cracks develop extensively and penetrate the ploughed soil, the infiltration rate may increase significantly. The infiltration fluxes of crack with depths of 80, 60 and 27·5 cm are 18·77, 14·50 and 8·06 times higher than that of 20 cm, respectively. The simulation results of cracks with 80 cm depth correlated closely with field observations. The results of the study elucidate the processes of unsaturated water movement in a dry cracked paddy field. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
15.
16.
In this paper the efficiency of various dissipative mechanisms to protect structures from pulse‐type and near‐source ground motions is examined. Physically realizable cycloidal pulses are introduced, and their resemblance to recorded near‐source ground motions is illustrated. The study uncovers the coherent component of some near‐source acceleration records, and the shaking potential of these records is examined. It is found that the response of structures with relatively low isolation periods is substantially affected by the high‐frequency fluctuations that override the long duration pulse. Therefore, the concept of seismic isolation is beneficial even for motions that contain a long duration pulse which generates most of the unusually large recorded displacements and velocities. Dissipation forces of the plastic (friction) type are very efficient in reducing displacement demands although occasionally they are responsible for substantial permanent displacements. It is found that the benefits by hysteretic dissipation are nearly indifferent to the level of the yield displacement of the hysteretic mechanism and that they depend primarily on the level of the plastic (friction) force. The study concludes that a combination of relatively low friction and viscous forces is attractive since base displacements are substantially reduced without appreciably increasing base shears and superstructure accelerations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
17.
The hydraulic properties of aquitards are not easily obtained because monitoring wells are usually installed in aquifers for groundwater resources management. Earthquake‐induced crust stress (strain) triggers groundwater level variations over a short period of time in a large area. These groundwater anomalies can be used to investigate aquifer systems. This study uses a poroelastic model to fit the postseismic variations of groundwater level triggered by the Chi‐Chi earthquake to evaluate the hydraulic properties of aquitards in the Jhoushuei River alluvial fan (JRAF), Taiwan. Six of the adopted eight wells with depths of 70 to 130 m showed good agreement with the recovery theory. The mean hydraulic conductivities (K) of the aquifers for the eight wells are 1.62 × 10?4 to 9.06 × 10?4 m/s, and the thicknesses are 18.8 to 46.1 m. The thicknesses of the aquitards are 11.3 to 42.0 m. Under the isotropic assumption for K, the estimated values of K for the aquitards are 3.0 × 10?8 to 2.1 × 10?6 m/s, corresponding to a silty medium. The results match the values obtained for the geological material of the drilling core and those reported in previous studies. The estimated values were combined with those given in previous studies to determine the distribution of K in the first two aquitards in the JRAF. The distribution patterns of the aquitards reflect the sedimentary environments and fit the geological material. The proposed technique can be used to evaluate the K value of aquitards using inverse methods. The inversion results can be used in hydrogeological analyses, contaminant modeling, and subsidence evaluation.  相似文献   
18.
In the context of the heterogeneity in the unsaturated or vadose zone, accurately representing the analytical mechanisms and in-situ water content within the soil layer poses a significant challenge. Particularly in shallow layers, thermal conditions exhibit rapid changes in response to evolving surface temperatures. This study proposes a hypothesis suggesting that the in situ heat mechanism may notably impact the soil water layer. The research introduces an innovative approach to theoretically uncover thermal conditions, including soil temperature, soil temperature gradients, and heat flux, within the shallow Quaternary gravel layer at various depths through spectral analysis of temporal observations. The study presents a stochastic inverse solution to estimate thermal conductivity by leveraging spectral analysis of soil heat flux and temperature gradients. The findings reveal that thermal conditions exhibit the most prominent periodic fluctuations during the diurnal process over a 24-hour cycle. The soil temperature gradients and heat flux measurements at depths of 0.1, 0.3, 0.6, and 1.2 m demonstrate their ability to capture changes in soil temperature and air temperature to a certain extent within the frequency domain. Furthermore, the analysis highlights the intrinsic uncertainty and sensitivity of estimating thermal conductivity in heterogeneous soil environments. The wide variability observed in thermal conductivity values, coupled with their dependence on soil type and environmental conditions, underscores the need for careful consideration of these factors in future studies and modeling efforts. Applying the derived inverse spectral solution allows for determining thermal conductivity throughout the soil-water system across depths ranging from 0.1 to 1.2 m. As a result, this research demonstrates the feasibility and practicality of assessing the thermal conductivity of the soil layer in conjunction with heat flux and temperature gradients through spectral analysis.  相似文献   
19.
20.
Exposure estimation using repeated blood concentration measurements   总被引:3,自引:3,他引:0  
Physiologically based toxicokinetic (PBTK) modeling has been well established to study the distributions of chemicals in target tissues. In addition, the hierarchical Bayesian statistical approach using Markov Chain Monte Carlo (MCMC) simulations has been applied successfully for parameter estimation. The aim was to estimate the constant inhalation exposure concentration (assumed) using a PBTK model based on repeated measurements in venous blood, so that exposures could be estimated. By treating the constant exterior exposure as an unknown parameter of a four-compartment PBTK model, we applied MCMC simulations to estimate the exposure based on a hierarchical Bayesian approach. The dataset on 16 volunteers exposed to 100 ppm (≅0.538 mg/L) trichloroethylene vapors for 4 h was reanalyzed as an illustration. Cases of time-dependent exposures with a constant mean were also studied via 100 simulated datasets. The posterior geometric mean of 0.571, with narrow 95% posterior confidence interval (CI) (0.506, 0.645), estimated the true trichloroethylene inhalation concentration (0.538 mg/L) with very high precision. Also, the proposed method estimated the overall constant mean of the simulated time-dependent exposure scenarios well with slightly wider 95% CIs. The proposed method justifies the accuracy of exposure estimation from biomonitoring data using PBTK model and MCMC simulations from a real dataset and simulation studies numerically, which provides a starting point for future applications in occupational exposure assessment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号