首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   8篇
大气科学   2篇
地球物理   32篇
地质学   35篇
海洋学   6篇
天文学   19篇
自然地理   20篇
  2021年   6篇
  2020年   1篇
  2019年   5篇
  2018年   6篇
  2017年   6篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   7篇
  2012年   4篇
  2011年   9篇
  2010年   4篇
  2009年   4篇
  2008年   10篇
  2007年   5篇
  2006年   4篇
  2005年   4篇
  2004年   6篇
  2003年   6篇
  2002年   6篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
  1983年   1篇
排序方式: 共有114条查询结果,搜索用时 15 毫秒
41.
Difficult access conditions have limited techniques for groundwater system characterization and monitoring in bedrock exposed landscapes. This condition is common in the mining industry and resulted in the development of lightweight portable drills. This paper describes how these drills were used at a contaminated site to understand the groundwater flow system by adapting piezometer designs, ensuring effective seals to obtain reliable hydraulic head, hydrochemistry, and contaminant concentrations. Two drilling machines were evaluated: the Shaw Portable Core Drill? fits in a backpack and can advance continuously cored rock holes, nominal 51 millimeters (mm) diameter, to depths up to approximately 15 meters (m); and the larger Winkie Drill? requires a two or more people to mobilize and can advance continuously cored holes, nominal 48 mm diameter, to depths of approximately 45 m. The resulting small diameter coreholes were accommodated in the design of each well using a seal created by injecting grout into a semipermeable fabric sleeve. This “fabric sleeve” serves as a means to contain the grout and ensures that the entire annulus above the screen is sealed without loss of grout into the formation, allowing the well to perform as a piezometer. To develop and demonstrate this methodology for groundwater monitoring in bedrock, the two drills were used in drainages located along the slopes of an elevated sandstone outcrop near Los Angeles, California. Unique insights into the groundwater flow system of this bedrock environment, which would otherwise be unattainable, were achieved. This methodology overcomes the accessibility limitations of conventional drilling methods that prevent installation of wells in remote and rugged mountainous terrains.  相似文献   
42.
Organic solvent (i.e., dense nonaqueous phase liquid, DNAPL) migration in the subsurface is known to be extremely sensitive to geologic heterogeneity. There is often a focus on heterogeneity that results from changing depositional conditions over short spatial scales. Similar or even more extreme spatial heterogeneity can result postdeposition due to erosional processes. This study applies a synergistic approach based on a combination of high‐resolution lithologic logs of continuous cores, borehole geophysical logs, surface electrical resistivity, and seismic refraction tomography models to assess spatial heterogeneity in a shallow bedrock sequence subject to multiple unconformities and contaminated with a mixture of organic chemicals. The persistence of DNAPL in the source zone and an associated dissolved‐phase plume led to variable impacts on formation resistivity across the study site. Seismic refraction in combination with electrical resistivity tomography improved interpretation of highly irregular erosional boundaries by delineating sharp lateral transitions in lithologic composition near the source zone and across the dissolved‐phase plume. Electrical resistivity was effective at differentiating between clean and mud‐rich sandstones and their unconformable contact with an underlying dolostone. Geophysical measurements revealed eroded dolostone mounds encased by a network of younger mud‐rich sandstones channelized by clean semi‐lithified sand, all of which was buried beneath variable glacial drift. Our synergistic multidimensional approach resulted in the development of a detailed three‐dimensional shallow bedrock geospatial model, which has led to an improved understanding of DNAPL migration and contaminant plume heterogeneity.  相似文献   
43.
44.
45.
We compared distribution and abundance by habitat for age-0, young-of-the-year (YOY) winter flounder,Pseudopleuronectes americanus, in three estuaries (Hammonasset River, Navesink River, and Great Bay-Little Egg Harbor) in the northeastern United States to better define essential fish habitat (EFH). Two replicates of five representative habitats were sampled in most estuaries: eelgrass (Zostera marina), unvegetated areas adjacent to eelgrass, macroalgae, (primarilyUlva lactuca), unvegetated areas adjacent to macroalgae, and tidal marsh creeks. Fish were sampled every two weeks, May through October 1995 and 1996, with a beam-trawl (1-m width, 3-mm mesh net). Abundance of YOY winter flounder was highest in the Navesink River estuary and similar between years, but was significantly lower and differed between years in the Great Bay-Little Egg Harbor and Hammonasset River estuaries. Annual temperature differences appear to influence estuary use by YOY. In the years and estuaries studied, where habitat-related differences in abundance were significant, YOY were found in higher densities in unvegetated areas adjacent to eelgrass. The exception was in the Hammonasset River in 1995 when densities were higher in eelgrass. We conclude that the type of habitat most important to YOY winter flounder varies among estuaries and as a result, care should be taken in defining EFH, based only on limited spatial and temporal sampling.  相似文献   
46.
47.
Low-permeability clayey and silty river terrace deposits are an important component in protecting underlying aquifers from contamination by agrochemicals and other contaminants. Such deposits also record deglaciation dynamics, meltwater drainage and local climatic variations. In this study, conducted over Mississippi River terraces near Savanna, Illinois, clayey slackwater terrace deposits and sandy terrace deposits are examined using resistivity soundings, ground-penetrating radar (GPR) profiles and direct-push conductivity logs. The clayey terrace deposits are characterized by low resistivity (10–35 ohm-m) and slow GPR wave velocity (0.07 m/ns), whereas non-clayey terrace deposits exhibit much higher resistivity (169–1,762 ohm-m) and faster GPR wave velocities (0.15 m/ns). Sandy and clayey terrace deposits may thus be differentiated and mapped on the basis of their geophysical response. Models based on resistivity soundings provide reasonably accurate estimates of the thickness of clayey slackwater deposits, but fail to reveal thin sands embedded in the clayey deposits. In some cases, the full thickness of the slackwater deposits was also not revealed. GPR profiles, however, imaged these embedded shallow sands and possibly imaged deeper sands below the base of the slackwater deposits, giving more accurate estimates of thickness. GPR also accurately resolved the thickness and character of sandy terrace deposits. Direct-push conductivity logs provide both accurate estimates of the thickness of clayey slackwater terrace deposits and a means of identifying thin embedded sands. In summary, resistivity soundings image these deposits at the lowest resolution with one-dimensional models, whereas GPR provides much higher resolution showing detailed layering within the upper several meters. Direct-push conductivity logs provide the highest resolution, but are invasive and only reveal stratigraphy at one location.  相似文献   
48.
We compare 13 near-infrared (0.8-2.4 μm) spectra of two low albedo C complex outer-belt asteroid families: Themis and Veritas. The disruption ages of these two families lie at opposite extremes: 2.5 ± 1.0 Gyr and 8.7 ± 1.7 Myr, respectively. We found striking differences between the two families, which show a range of spectral shapes and slopes. The seven Themis family members (older surfaces) have “red” (positive) slopes in the 1.6-2.4 μm region; in contrast, the six Veritas members (younger surfaces) have significantly “flatter” slopes at these same wavelengths. Moreover, the two families are characterized by different concavity at shorter (1.0-1.5 μm) wavelengths with the Themis group being consistently flat or concave up (smile) and the Veritas group being consistently concave down (frown). Each family contains a broad range of diameters, suggesting our results are not due to comparisons of asteroids of different sizes. The statistically significant clustering of the two spectral groups could be explained by one of the following three possibilities or a combination of them: (1) space weathering effects, (2) differences in original composition, or (3) differences in thermal history perhaps as a result of the difference in parent body sizes. As a result of our analyses, we propose a new method to quantify broad and shallow structures in the spectra of primitive asteroids. We found reasonable matches between the observed asteroids and individual carbonaceous chondrite meteorites. Because these meteoritic fits represent fresh surfaces, space weathering is neither necessary nor ruled out as an explanation of spectral differences between families. The six Veritas family near-infrared (NIR) spectra represent the first NIR analysis of this family, thus significantly increasing our understanding of this family over these wavelengths.  相似文献   
49.
This article tests the explanatory power and interactions among five alternative explanations of environmental knowledge: (1) local information availability, (2) neighborhood characteristics, (3) environmental attitudes, (4) personal empowerment, and (5) information seeking. Using random forest and conditional inference trees, the article analyzes survey responses and finds that attitudes about personal empowerment and frequent information seeking are the strongest predictors of knowledge. The study offers random forest and conditional inference trees as statistical tools for complex data sets and studies that test hypotheses generated from multiple theories. We discuss the influence of knowledge differences over inclusive sustainability discussions.  相似文献   
50.
This study examines the experiences of geography graduates who work in business, government, and nonprofit organizations. We analyzed 352 logs from eighty-two professionals detailing professional activities, challenges, and opportunities during one work week each month, over a period of six months. Our analysis explores interpersonal relationships and working conditions affecting participants’ progress toward work goals, workplace climate, and professional identity. Geographic information systems and technology accounted for more than half of the geographic skills respondents reported using on the job, and administrative and leadership factors were the most commonly cited types of transferable skills. Professional geographers value collaborative workplaces as well as opportunities to work independently with the confidence of their supervisors, and their sense of a professional identity is enhanced when they feel valued and are recognized for their work. Professional development activities are important because they reinforce geographers’ sense of positively contributing to their organizations, enhance interpersonal interactions, facilitate work on specific projects, and expand individuals’ knowledge and skills. Moreover, our findings suggest that nearly half of the reported workplace difficulties could potentially be reduced or eliminated as a result of more and better professional development. Nonetheless, many employers do not consistently provide opportunities for professional development to their employees. Based on our analysis, we contend that professional development is a beneficial investment for lifelong learning, from undergraduate and graduate education throughout the entire course of a professional career.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号