首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
地球物理   3篇
地质学   7篇
海洋学   1篇
天文学   4篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2010年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
  1975年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
11.
Evidence of hydrocarbon venting within slumped bodies associated with the siliciclastic, dominantly turbiditic, Marnoso-arenacea Formation (Umbria-Romagna structural domain, Romagna Apennine, northern Italy) is documented with sedimentological, faunal, and geochemical data. Specifically,13C-depleted carbonate concretions and limestones and clusters of chemosynthetic clams (Vesicomyidae) have been identified in the marls of the Le Caselle Olistostrome and other slumped bodies contained within the Early Serravallian section of the Marnoso-arenacea Fm. Most of the olistostrome marls and limestones are extrabasinal and must have slid from a source area located several kilometers southwest of their present position. Thus, they presumably pertain to the Vicchio Marls Formation of the northeastern (outer) Tuscan structural domain, with possible minor contributions from the epi-Ligurian Bismantova Fm. It is suggested that venting of methane in the source area of the olistostromes permitted the establishment of exotic chemosynthetic communities and promoted the precipitation of carbonate concretions and limestones. According to the field evidence, these materials were later subjected to multistep downslope remobilization and were eventually carried into the Marnoso-arenacea basin through gravity mass transport.  相似文献   
12.
Back analysis of a large landslide in a flysch rock mass   总被引:1,自引:1,他引:0  
Flysch is a sedimentary rock consisting of a rhythmic alternation of hard (limestone, sandstone, siltstone) and weak (marl, mudstone, claystone) layers. Because of the presence of layers with different physical properties, the mechanical characterization of heterogeneous rock masses such as flysch is a real challenge. Different methods have been proposed in the literature to characterize flysch, combining empirical classification indexes with laboratory tests. Most of these methods, however, were specifically designed for tunneling and underground excavations, and their applicability to slope stability problems is not yet fully investigated. In this study, we analyze a large landslide in a cretaceous flysch rock in order to compare the mobilized strength at failure with those predicted by the modified GSI method (Marinos and Hoek, 2001). The landslide occurred in the Savena River basin (Northern Apennines of Italy) on April 6, 2013, with a volume of about 3 million m3. Soon after the failure, geological, geotechnical, and geophysical investigations were carried out to detect the failure mechanism and define the landslide geometry. Back analyses of the failed slope were performed using both limit equilibrium and finite difference methods to estimate the in situ strength of the flysch. The results show that the mobilized rock mass cohesion is very low (c '?≈?20?÷?40 kPa) and that the modified GSI method can predict the in situ strength only assuming a disturbance factor D = 1. Moreover, the analysis shows that the linearization criteria proposed in literature to compute the equivalent Mohr-Coulomb parameters remarkably overestimate the rock mass strength.  相似文献   
13.
Flow-like landslides in clayey soils represent serious threats for populations and infrastructures and have been the subject of numerous studies in the past decade. However, despite the rising need for landslide mitigation with growing urbanization, the transient mechanisms involved in the solid-fluid transition are still poorly understood. One way of characterizing the solid-fluid transition is to carry out rheometrical tests on clayey soil samples to assess the evolution of viscosity with the shear stress. In this study, we carried out geotechnical and rheometrical tests on clayey samples collected from six flow-like landslides in order to assess if these clayey soils exhibit similar characteristics when they fluidize (solid-fluid transition). The results show that (1) all tested soils except one exhibit a yield-stress fluid behavior that can be associated with a bifurcation in viscosity (described by the critical shear rate \( \dot{\gamma_c} \)) and in shear modulus G; (2) the larger the amplitude of the viscosity bifurcation, the larger the associated drop in G; and (3) the water content (w) deviation from the Atterberg liquid limit (LL) seem a key parameter controlling a common mechanical behavior of these soils at the solid-fluid transition. We propose exponential laws describing the evolution of the critical shear stress τc, the critical shear rate \( \dot{\gamma_c} \), and the shear modulus G as a function of the deviation w-LL.  相似文献   
14.
15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号