首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   351篇
  免费   10篇
  国内免费   3篇
测绘学   16篇
大气科学   13篇
地球物理   78篇
地质学   184篇
海洋学   22篇
天文学   26篇
自然地理   25篇
  2022年   2篇
  2021年   7篇
  2020年   2篇
  2019年   11篇
  2018年   7篇
  2017年   14篇
  2016年   16篇
  2015年   15篇
  2014年   11篇
  2013年   13篇
  2012年   14篇
  2011年   24篇
  2010年   16篇
  2009年   17篇
  2008年   21篇
  2007年   21篇
  2006年   21篇
  2005年   14篇
  2004年   16篇
  2003年   13篇
  2002年   9篇
  2001年   10篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   11篇
  1996年   5篇
  1995年   2篇
  1994年   5篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1978年   2篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   4篇
  1970年   1篇
  1967年   1篇
  1964年   2篇
  1960年   1篇
  1952年   1篇
  1949年   1篇
排序方式: 共有364条查询结果,搜索用时 15 毫秒
51.
In the polymetamorphic Austroalpine Matsch Unit (European Eastern Alps) Cretaceous upper greenschist facies metamorphism overprinted Variscan and Permian magmatic and metamorphic assemblages. Mineral compositional and (micro-)structural data of metapelites and metapegmatites document different mechanisms of interrelated deformation and (re-)equilibration during Cretaceous overprinting: i) Microfractures in relic garnet represented pathways for material transport, and thus established material exchange between intragranular domains and the matrix. Major element equilibration by fast diffusion along microfractures contrasts with limited volume diffusion in adjacent host garnet. ii) Syn-tectonic breakdown of staurolite initially to paragonite, then chloritoid allows correlating reaction progress with the formation of different fracture sets. iii) Syn-tectonic mineral growth with shape-preferred orientation in foliation domains contrasts with radial growth in microlithons and strain shadows of the mylonitic foliation. iv) Syn-tectonic unmixing of pre-existing oligoclase (an14–16) produced fine-grained aggregates of two supposedly coexisting plagioclase-phases (an3–6 and an20–25) in strain shadows of the oligoclase-clasts. v) Pre-existing deformation-induced heterogeneities in the spatial distribution of phases and their preferred orientation influence the kinetics of phase equilibration. Understanding the mechanisms of the mutual interrelation between deformation and phase equilibration is a prerequisite for deducing PT-constraints from strained metamorphic rocks. New garnet—whole rock Sm-Nd data from metapegmatites indicate their emplacement at 263–280 Ma and provide an important age constraint on the interrelated deformation and re-equilibration processes.  相似文献   
52.
The in-situ “chemical” Th–U–Pb dating of monazite with the electron microprobe is used to unravel the Neoproterozoic tectono-thermal history of the “Erinpura Granite” terrane in the foreland of the Delhi Fold Belt (DFB) in the NW Indian craton. These granitoids are variably deformed and show effects of shearing activity. Monazites from the Erinpura granitoids recorded two main events; (1) protolith crystallization at 863 ± 23 Ma and (2) recrystallization and formation of new Th-poor monazite at 775 ± 26 Ma during shear overprint. Some components of the Erinpura granitoids, such as the Siyawa Granite and granites exposed near Sirohi town, show evidence of migmatization. This migmatization event is documented by anatexis and associated monazite crystallization at 779 ± 16 Ma. The age data indicate an overlap in timing between anatectic event and ductile shear deformation. The end of the tectono-thermal event in the Sirohi area is constrained by a 736 ± 6 Ma Ar–Ar muscovite age data from the ductile shear zone.  相似文献   
53.
International Journal of Earth Sciences - New Ar–Ar muscovite and Rb–Sr biotite age data in combination with structural analyses from the Apuseni Mountains provide new constraints on...  相似文献   
54.
A review of published literature on the sensitivity of corals to turbidity and sedimentation is presented, with an emphasis on the effects of dredging. The risks and severity of impact from dredging (and other sediment disturbances) on corals are primarily related to the intensity, duration and frequency of exposure to increased turbidity and sedimentation. The sensitivity of a coral reef to dredging impacts and its ability to recover depend on the antecedent ecological conditions of the reef, its resilience and the ambient conditions normally experienced. Effects of sediment stress have so far been investigated in 89 coral species (~10% of all known reef-building corals). Results of these investigations have provided a generic understanding of tolerance levels, response mechanisms, adaptations and threshold levels of corals to the effects of natural and anthropogenic sediment disturbances. Coral polyps undergo stress from high suspended-sediment concentrations and the subsequent effects on light attenuation which affect their algal symbionts. Minimum light requirements of corals range from <1% to as much as 60% of surface irradiance. Reported tolerance limits of coral reef systems for chronic suspended-sediment concentrations range from <10mgL(-1) in pristine offshore reef areas to >100mgL(-1) in marginal nearshore reefs. Some individual coral species can tolerate short-term exposure (days) to suspended-sediment concentrations as high as 1000mgL(-1) while others show mortality after exposure (weeks) to concentrations as low as 30mgL(-1). The duration that corals can survive high turbidities ranges from several days (sensitive species) to at least 5-6weeks (tolerant species). Increased sedimentation can cause smothering and burial of coral polyps, shading, tissue necrosis and population explosions of bacteria in coral mucus. Fine sediments tend to have greater effects on corals than coarse sediments. Turbidity and sedimentation also reduce the recruitment, survival and settlement of coral larvae. Maximum sedimentation rates that can be tolerated by different corals range from <10mgcm(-2)d(-1) to >400mgcm(-2)d(-1). The durations that corals can survive high sedimentation rates range from <24h for sensitive species to a few weeks (>4weeks of high sedimentation or >14days complete burial) for very tolerant species. Hypotheses to explain substantial differences in sensitivity between different coral species include the growth form of coral colonies and the size of the coral polyp or calyx. The validity of these hypotheses was tested on the basis of 77 published studies on the effects of turbidity and sedimentation on 89 coral species. The results of this analysis reveal a significant relationship of coral sensitivity to turbidity and sedimentation with growth form, but not with calyx size. Some of the variation in sensitivities reported in the literature may have been caused by differences in the type and particle size of sediments applied in experiments. The ability of many corals (in varying degrees) to actively reject sediment through polyp inflation, mucus production, ciliary and tentacular action (at considerable energetic cost), as well as intraspecific morphological variation and the mobility of free-living mushroom corals, further contribute to the observed differences. Given the wide range of sensitivity levels among coral species and in baseline water quality conditions among reefs, meaningful criteria to limit the extent and turbidity of dredging plumes and their effects on corals will always require site-specific evaluations, taking into account the species assemblage present at the site and the natural variability of local background turbidity and sedimentation.  相似文献   
55.
A multi‐method research design based on terrestrial laser scanning, GIS, geophysical prospecting (electrical resistivity tomography, refraction seismics) and sedimentology is applied for the first time to investigate enclosed karst depressions in an integrated way. Fusing multi‐resolution surface and subsurface geodata provides profound insights into the formation, geometry and geomorphologic processes of dolines. The studied landforms, which are located in the Dikti Mountains of East Crete, are shown to be filled by loose sediments of thicknesses of up to 30 m that mainly consist of fine‐grained material overlying solid bedrock at depths below 35 to 45 m. By combining subsurface observations with geomorphometric calculations, local doline genesis can be traced back to initial collapse of fractured bedrock followed by subsequent infilling with colluvials. In order to define crucial methodological requirements and guidelines for data fusion, both the impact of different elevation models and the influence of data resolution are assessed. Surface volumes of depressions derived by the digital surface model are 7–21% higher than the results obtained from the terrain model due to vegetation. Similarly, estimates of infill volume calculated on the basis of geophysical outcomes and elevation data differ by up to 13%. Calculations of the landforms' current volumes (i.e. total surface and subsurface volume), however, are fairly insensitive to raster resolution. Hence, the distinct geomorphologic properties of landforms (e.g. shape, terrain roughness, slope inclination) substantially determine the geomorphometric analysis of both surface and subsurface data. As shown by the findings, data fusion to integrate digital terrain, geophysical and sedimentological datasets of varied resolutions benefits geomorphologic studies and helps provide a comprehensive image of landforms. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
56.
ABSTRACT

In this surface water modelling study, a new spatial evaluation for assessing the impact of urbanization was applied for the semi-arid watersheds intersecting with the Gaza coastal aquifer. The SWAT model was calibrated and validated in a semi-automated approach for streamflow in the main watersheds. The results show that the model could simulate water budget components adequately within the complex semi-arid watersheds. Linear relationships between the change in urban area and the corresponding change in surface runoff or percolation were concluded for the urbanized sub-basins. The urban-surface runoff index (USI) and the urban-percolation index (UPI) were developed to represent a micro-level evaluation of different urban change scenarios in the sub-basins. The global urban-surface runoff index (GUSI) and the global urban-percolation index (GUPI) were derived as macro-level factors reflecting the influence on the overall Gaza coastal aquifer due to urban area expansion.
Editor D. Koutsoyiannis Associate editor E. Rozos  相似文献   
57.
Optimized formulas for the gravitational field of a tesseroid   总被引:7,自引:3,他引:4  
Various tasks in geodesy, geophysics, and related geosciences require precise information on the impact of mass distributions on gravity field-related quantities, such as the gravitational potential and its partial derivatives. Using forward modeling based on Newton’s integral, mass distributions are generally decomposed into regular elementary bodies. In classical approaches, prisms or point mass approximations are mostly utilized. Considering the effect of the sphericity of the Earth, alternative mass modeling methods based on tesseroid bodies (spherical prisms) should be taken into account, particularly in regional and global applications. Expressions for the gravitational field of a point mass are relatively simple when formulated in Cartesian coordinates. In the case of integrating over a tesseroid volume bounded by geocentric spherical coordinates, it will be shown that it is also beneficial to represent the integral kernel in terms of Cartesian coordinates. This considerably simplifies the determination of the tesseroid’s potential derivatives in comparison with previously published methodologies that make use of integral kernels expressed in spherical coordinates. Based on this idea, optimized formulas for the gravitational potential of a homogeneous tesseroid and its derivatives up to second-order are elaborated in this paper. These new formulas do not suffer from the polar singularity of the spherical coordinate system and can, therefore, be evaluated for any position on the globe. Since integrals over tesseroid volumes cannot be solved analytically, the numerical evaluation is achieved by means of expanding the integral kernel in a Taylor series with fourth-order error in the spatial coordinates of the integration point. As the structure of the Cartesian integral kernel is substantially simplified, Taylor coefficients can be represented in a compact and computationally attractive form. Thus, the use of the optimized tesseroid formulas particularly benefits from a significant decrease in computation time by about 45 % compared to previously used algorithms. In order to show the computational efficiency and to validate the mathematical derivations, the new tesseroid formulas are applied to two realistic numerical experiments and are compared to previously published tesseroid methods and the conventional prism approach.  相似文献   
58.
Control of erosion, and all of its after effects, from increased surface drainage and erosion to the formation of karst, is one of the essential problems when undertaking recultivation following necessary interventions in the sub-alpine and alpine vegetation stage (high zones). Average slope inclinations of 30–45% in the vicinity of ski runs, and far above in areas of natural erosion and avalanche zones, make restoration processes with sufficient erosion protection the prerequisite for success. Only a sufficient vegetation development of more than 70% ground cover stabilises the topsoil in the long term and reduces soil erosion to an acceptable degree. From 1999 to 2002, an international EU project with the participation of research groups and private firms from Austria, Italy and Germany was carried out under the direction of the Agricultural Research and Education Centre Raumberg-Gumpenstein (AREC) on five different Alpine sites at altitudes from 1,245 to 2,350 m above sea level. The aim of the work was the formulation of practice-relevant requirements for recultivation following intervention in high zones, especially following constructional measures in the vicinity of ski runs and lifts, torrent- and avalanche barriers. In a statistical comparison, the relationship between restoration techniques, seed mixtures of differing ecological value and vegetation cover was observed. The influence of application technique on erosion processes after restoration was obvious for the first two vegetation periods. Only with the additional use of mulch covers could increase surface drainage and noticeable soil loss be avoided. At high altitudes, the choice of seed mixture, irrespective of whether rapid or slow growing and independent of the extent of accompanying fertilisation, had no significance in the first two vegetation periods following sowing. In the following growing seasons, however, higher cover values were obtained with site-specific seed mixtures at three of the five experimental sites. While few species of the commercial seed mixture showed satisfactory persistency, most of the grasses and in particular the alpine leguminosae of site-specific seed mixtures increased their share during the observation period. In the long-term, sufficient protection against erosion is only guaranteed by the use of stable, enduring and ecologically adapted species.  相似文献   
59.
60.
The main objectives of this study were to describe the seasonal standing stock dynamics of phytoplankton, bacterioplankton and heterotrophic flagellates in the highly eutrophic River Elbe (Germany), and to compare the seasonal patterns observed with other streams. Emphasis was placed on examining and assessing abiotic and biotic controlling factors influencing the structure and dynamics of the riverine plankton. All the physico-chemical and biological parameters determined were within the range or somewhat higher (in the case of phytoplankton abundance and biomass) than reported for other large streams. The underwater light conditions resulting from atypically short phytoplankton growth periods of about 6 months per year and the low phytoplankton carbon to chl a ratio of 23 were identified as a major limiting factor for phytoplankton development in the River Elbe. The seasonal distribution pattern of bacterioplankton indicated probable tight trophodynamical coupling both with phytoplankton and with heterotrophic flagellates, whereas heterotrophic flagellates showed a more trophic link with bacterial densities. Although approximately constant DOC and DON levels throughout the year sustained bacterial growth rates, during the phytoplankton growing season an increase of bacterial standing stocks was observed. Although the left-bank sampling site of the Elbe is strongly influenced by the tributaries Mulde and Saale containing higher concentrations of chloride, nitrogen nutrients, heavy metals and organic pollutants, no clear differences were observed between the two sides of the river concerning the biological parameters measured. Possible reasons and the slightly higher phytoplankton abundance and diversity at the right bank are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号