首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
大气科学   8篇
地球物理   4篇
地质学   45篇
海洋学   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   5篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
排序方式: 共有58条查询结果,搜索用时 31 毫秒
51.
Results from the study of experimental plots at Hubbard Brook, New Hampshire for the years 1987, 1988, 1993, 1994, 1995, and 1996 show that the water draining from under a plot planted with pine trees exhibits its highest alkalinity during the year at about the time of spring snowmelt. This high alkalinity is believed to be due to buildup during the winter under a snow cover. The soil solutions are protected from acidic precipitation by the snow, and the natural process of the reaction of organic acids and carbonic acid with minerals and exchange complexes to form dissolved HCO3 (and organic anions) proceeds with an increase in alkalinity through the winter. When the snow melts the acidic meltwater mixes with, neutralizes and displaces the water previously occupying the soil interstices. This leads to a decided drop in alkalinity of the drainage water. The alkalinity buildup under the pine plot was found to be two to ten times greater than under a similar plot containing no higher plants. This strongly emphasizes the important role of plants, in their ability to produce organic acids and high levels of CO2, in accelerating the weathering of silicate minerals.  相似文献   
52.
Experimental data from two field experiments on ground based clouds were used to study the distribution of formic acid, acetic acid, ammonia and S(IV) species between liquid and gas phase. The ratio of the concentrations of these compounds between the phases during concurrent measurements was compared to ratios expected according to Henry's law (considering the pH influence). Large discrepancies of several orders of magnitude were seen. Three hypotheses have been investigated to explain the observed discrepancies: The existence of a microscale equilibrium which does not persist in a bulk sample, a thermodynamic shift of the equilibrium due to competing reactions, and nonequilibrium conditions due to mass transfer limitations. Approximate quantitative calculations show that none of these hypotheses is sufficient to explain all of the discrepancies, so a combination of different effects seems to be responsible for this observation. The same theoretical considerations also suggest that mass transfer limitation may be an important factor for highly soluble compounds. The data presented here indicates that it is not possible to simply extrapolate interstitial gas phase composition from measured bulk liquid phase concentrations of a fog or cloud.Notation [r max] liquid phase molar uptake rate (mol l–1 s–1) - [A g ] concentration ofA in gas phase (atm) - [A l ] concentration ofA in liquid phase (mol l–1) - [A g , 0] concentration ofA in gas phase (atm) at time 0 - LWC liquid water content (g m–3) - R universal gas constant (0.082 l atm mol–1 K–1 - D g diffusivity (for all gases 0.1 cm2 s–1 was used) - K H * effective Henry's law coefficient (mol l–1 atm–1) - t f lifetime of fog droplet (s) - a droplet radius (cm) - accommodation coefficient - R factor of discrepancy - T temperature (K) - v mean molecular speed (cm s–1) formic acid: 35 000 acetic acid: 31 000 ammonia: 58 000  相似文献   
53.
Batch and column experiments were conducted to examine the capability of naturally formed hematite and siderite to remove As from drinking water. Results show that both minerals were able to remove As from aqueous solutions, but with different efficiencies. In general, each material removed arsenate much more efficiently than As–DMA (dimethylarsinic acid), with the lowest adsorption efficiency for arsenite. The best removal efficiency for As species was obtained using a hematite, with a grain size range between 0.25 and 0.50 mm. The adsorption capacity for inorganic As(V) reached 202 μg/g. The pH generally had a great impact on the arsenate removal by the Fe minerals studied, while arsenite removal was slightly dependent on the initial pH of between 3 and 10. The presence of phosphate always had a negative effect on arsenate adsorption, due to competitive adsorption between them. A column packed with hematite in the upper half and siderite in the lower half with a grain size range of 0.25–0.5 mm proved to be an efficient reactive filter for the removal of all As species, causing a decrease in As concentration from 500 μg/L (including 200 μg/L As(V) as arsenate, 200 μg/L As(III) as arsenite and 100 μg/L As(V) as DMA) to less than 10 μg/L after 1055 pore volumes of water were filtered at a flow rate of 0.51 mL/min. After 2340 pore volumes passed through the column filter, the total inorganic As in the effluent was less than 5 μg/L. The total As load in the column filter was estimated to be 0.164 mg/g. Results of μ-synchrotron X-ray fluorescence analysis (μ-XRFA) suggest that coatings of fresh Fe(III) oxides, formed on the surface of the siderite grains after two weeks of operation, greatly increased the adsorption capacity of the filling material towards As.  相似文献   
54.
The rise of large vascular plants during the mid-Paleozoic brought about a major increase in the rates of weathering of silicate minerals that induced a drop in the level of atmospheric CO2 and contributed, via the atmospheric greenhouse effect, to global cooling and the initiation of the most long lived and a really extensive glaciation of the past 550 million years. Sedimentary burial of the microbiologically resistant remains of the plants resulted during the Permo-Carboniferous in both further lowering of CO2 and in elevation of atmospheric O2. Evidence of changes in CO2 and O2 are provided by mathematical models, studies of paleosols, fossil plants, fossil insects, and the effects of modern plants on silicate weathering, and by laboratory studies of the effects of changes in O2 on plants and insects. To cite this article: R.A. Berner, C. R. Geoscience 335 (2003).  相似文献   
55.
Examination of the surface morphology (via scanning electron microscopy) and surface composition (via X-ray photoelectron spectroscopy) of sodic plagioclase and potash feldspar grains taken from four different soils, provides little or no evidence for the existence of a tightly adhering protective surface layer of altered composition on the feldspar surface. Grains, from which all adhering clay has been removed by ultrasonic cleaning, exhibit the same chemical composition in the outermost few tens of angstroms as the underlying feldspar. Aluminum-rich ‘clay’ coatings which continue to adhere to the grains after ultrasonic treatment are patchy, highly hydrous, and unlikely to act as major diffusion-limiting, and thus protective, barriers. Attack by dissolution of the feldspar surface is non-uniform and follows a definite etching sequence characterized by the development and growth of distinctive etch pits. This dissolution sequence can be reproduced by treating fresh feldspars in the laboratory with strong HF-H2SO4? solutions and, thus, the sequence is unaffected by the composition of the attacking solution. All of our results suggest that the dissolution of feldspar during weathering is controlled by selective chemical reaction at the feldspar-solution interface and not by uniform diffusion through a protective surface layer.  相似文献   
56.
The seeded precipitation (crystal growth) of aragonite and calcite from sea water, magnesium-depleted sea water, and magnesium-free sea water has been studied by means of the steady-state disequilibrium initial rate method. Dissolved magnesium at sea water levels appears to have no effect on the rate of crystal growth of aragonite, but a strong retarding effect on that of calcite. By contrast, at levels less than about 5 per cent of the sea water level, Mg has little or no effect on calcite growth. Extended crystal growth on pure calcite seeds in sea water of normal Mg content resulted in the crystallization of magnesium calcite overgrowths, containing 7–10 mole % MgCO3 in solid solution. This suggests that the rate inhibition by Mg is due to its incorporation within the calcite crystal structure during growth, which causes the resulting magnesian calcite to be considerably more soluble than pure calcite. The standard free energy of formation of 8.5 mole% Mg calcite calculated on this assumption is in good agreement with independent estimates of magnesian calcite stability.From the work of Katz (Geochim. Cosmochim. Acta37, 1563–1586, 1973), Plummer and Mackenzie (Amer. J. Sci. 273, 515–522, 1974), and the present paper, it can be predicted that the most stable calcite in Ca-Mg exchange equilibrium with sea water contains between 2 and 7 mole%MgCO3 in solid solution. Likewise, calcites containing more than 8.5 mole% MgCO3 are less stable, and those containing less than 8.5 mole% MgCO3 are more stable than aragonite plus Ca and Mg in sea water.  相似文献   
57.
The chemistry of cloud multiphase systems was studied within the Kleiner Feldberg Cloud Experiment 1990. The clouds encountered during this experimental campaign could be divided into two categories according to the origin of air masses in which the clouds formed. From the chemical point of view, clouds passing the sampling site during the first period of the campaign (26 October-4 November) were characterized by lower pollutant loading and higher pH, as compared to clouds during the final period of the experimental campaign (10–13 November). The study of multiphase partitioning of the main chemical constituents of the cloud systems and of atmospheric acidity within the multiphase systems themselves (gas + interstitial aerosol + liquid droplets) are presented in this paper. A general lack of gaseous NH3 was found in these cloud systems, which caused a lack of buffer capacity toward acid addition. Evidence supports the hypothesis that the higher acidity of the cloud systems during this final period of the campaign was due to input of HNO3. Our measurements, however, could not determine whether the observed input was due to scavenging of gaseous HNO3 from the air feeding into the cloud, or to heterogeneous HNO3 formation via NO2 oxidation by O3 to NO3 and N2O5. Sulfate in cloud droplets mainly originated from aerosol SO 4 2– scavenging, since S(IV) to S(VI) liquid phase conversion was inhibited due to both lack of H2O2 and low pH of cloud droplets, which made O3 and metal catalyzed S(IV) oxidation inefficient.  相似文献   
58.
In comparison to similar low-sulfate coastal environments with anoxic-sulfidic sediments, the Achterwasser lagoon, which is part of the Oder estuary in the SW Baltic Sea, reveals unexpectedly high pyrite concentrations of up to 7.5 wt%. Pyrite occurs mainly as framboidal grains variable in size with diameters between 1 and 20 μm. Pyritization is not uniform down to the investigated sediment depth of 50 cm. The consumption of reactive-Fe is most efficient in the upper 20 cm of the sediment column, leading to degrees of pyritization (DOP) as high as 80 to 95%.Sediment accumulation in the Achterwasser takes place in high productivity waters. The content of organic carbon reaches values of up to 10 wt%, indicating that pyrite formation is not limited by the availability of organic matter. Although dissolved sulfate concentration is relatively low (<2 mmol/L) in the Achterwasser, the presence of H2S in the pore water suggests that sulfate is unlikely to limit pyrite authigenesis. The lack of free Fe(II) in the pore waters combined with the possibility of a very efficient transformation of Fe-monosulfides to pyrite near the sediment/water interface suggests that pyrite formation is rather controlled by (i) the availability of reactive-Fe, which limits the FeS formation, and by (ii) the availability of an oxidant, which limits the transformation of FeS into pyrite. The ultimate source for reactive-Fe is the river Oder, which provides a high portion of reactive-Fe (∼65% of the total-Fe) in the form of suspended particulate matter. The surficial sediments of the Achterwasser are reduced, but are subject to oxidation from the overlying water by resuspension. Oxidation of the sediments produces sulfur species with oxidation states intermediate between sulfide and sulfate (e.g., thiosulfate and polysulfides), which transform FeS to FeS2 at a significant rate. This process of FeS-recycling is suggested to be responsible for the formation of pyrite in high concentrations near the sediment surface, with DOP values between 80 and 95% even under low sulfate conditions.A postdepositional sulfidization takes place in the deeper part of the sediment column, at ∼22 cm depth, where the downward diffusion of H2S is balanced by the upward migration of Fe(II). The vertical fluctuation of the diffusion front intensifies the pyritization of sediments. We suggest that the processes described may occur preferentially in shallow water lagoons with average net-sedimentation rates close to zero. Such environments are prone to surficial sediment resuspension, initiating oxidation of Fe-sulfides near the sediment/water interface. Subsequent FeS2 formation as well as postdepositional sulfidization leads to a major pyrite spike at depth within the sediment profile.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号