首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
大气科学   8篇
地球物理   4篇
地质学   45篇
海洋学   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   5篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
排序方式: 共有58条查询结果,搜索用时 31 毫秒
41.
Iron silicate minerals (bronzite, fayalite), exposed to aqueous dissolution in the laboratory for up to 60 days at room temperature and pH 1, 1.5, and 6, have been studied for evidence of changes in surface composition, using XPS, and these results compared with those obtained from solution chemical analysis. In the absence of dissolved O2 or at low pH (1–1.5) dissolution proceeds congruently after the initial formation of a thin (<10 Å) protonated surface layer depleted in Fe relative to Si. This layer is unstable and does not grow with time as attested to by long term congruent dissolution and by the formation of an amorphous silica surficial breakdown product at pH 1 and 1.5. In bronzite the layer is also slightly depleted in Mg but much less than it is in Fe due to the preferential occupation by Fe+2 of more weakly bonded M2 sites. The behavior of the layer is similar to that found earlier on iron-free pyroxene (Schottet al., 1981); in other words, because of its thinness and instability it is not diffusion-inhibiting or protective toward dissolution.In the presence of dissolved O2, as would be the case in most weathering solutions, dissolution of bronzite and fayalite results in the formation of two surface layers whose compositions were deduced by measurements of XPS binding energies. The outer layer, consisting of hydrous ferric oxide, is readily removed by ultrasonic cleaning and, most likely, is not protective toward dissolution. The inner layer consists of Fe+3 in a protonated or hydroxylated silicate (Mg-silicate in the case of bronzite) matrix. This layer appears to impede dissolution over the time scale of the experiment as attested to by parabolic dissolution rates. However, the layer does not continue to grow on the time scale of weathering because ultrasonically cleaned soil grains (Berner and Schott, 1982) exhibit surface compositions similar to those found in the present month-long laboratory experiments. In other words, a thick, highly altered, diffusion-inhibiting, protective surface layer does not form at the acidic pH of most soils.  相似文献   
42.
In present day marine sediments, almost all of which are deposited in normal oxygenated seawater, rates of burial of organic carbon (C) and pyrite sulfur (S) correlate positively and bear a constant ratio to one another (C/S ~- 3 on a weight basis). By contrast, calculations, based on the isotopic model of Garrels and Lerman (1981), indicate that at various times during the Phanerozoic the worldwide burial ratio must have been considerably different than the present day value. This ratio change is caused by the requirement that, increases in the worldwide mass of organic carbon must be accompanied by equivalent decreases in the mass of sedimentary pyrite sulfur, in order to maintain a roughly constant level of O2 in the atmosphere. Such apparently contradictory behavior can be explained if the locus of major organic carbon burial has shifted over time from normal marine environments, as at present, to non-marine freshwater, or to euxinic environments, in the geologic past. A shift to predominantly freshwater burial can help explain predicted high C/S ratios in Permo-Carboniferous sediments, and a shift to euxinic environments can help explain predicted low C/S ratios during the early Paleozoic. It is demonstrated that the three environments today exhibit distinguishably different average C/S ratios.  相似文献   
43.
The initial gradient of dissolved sulfate in the pore waters of anoxic marine sediments, representing a wide variety of environments from the deep-sea to estuaries, has been found to be directly proportional, within a factor of two, to the rate of sedimentation. Data from all areas considered, except the Mississippi Delta, fall along the same straight line. The linear proportionality can be explained on the basis of a theoretical model which assumes that organic matter decomposition by sulfate-reducing bacteria, plus associated fermentative micro-organisms, is first order with respect to the concentration of metabolizable organic matter. The model also assumes that the reactivity of metabolizable organic matter varies considerably from sediment to sediment while its concentration remains essentially constant. It is likely that the proportionality observed here also applies to other sediments and, thus, the initial sulfate gradient may be a useful parameter for estimating the rate of deposition of anoxic sediments.  相似文献   
44.
Sanidine grains (100–600 μm in diameter) were subjected to dissolution at 82°C in aqueous electrolyte solutions of pH ranging from 4 to 8 for 293 or 377 hr. Dissolution equivalent to the removal of silica from the outer 300–900 A of these grains was accomplished. The shallow subsurfaces of feldspar grains were then analyzed for K, Al, and Si by X-ray photoelectron spectroscopy. The results rule out any continuous precipitate layer; if an alkali-depleted subsurface zone (leached layer) was present in the feldspar, the thickness of such a zone approximated by linear increase of alkali concentration with depth was not more than about 17 Å.It is concluded that in the absence of a compact precipitate layer, dissolution of feldspars in the temperature range corresponding to deep diagenesis is controlled by the processes at the feldspar-solution interface and a leached layer more than one feldspar unit cell thick does not form. Whether the same applies at the temperatures of shallow diagenesis and weathering cannot be judged with certainty, but parallels with leached layers on alkali silicate glasses suggest that it does.  相似文献   
45.
Gas and fluid venting at the Makran accretionary wedge off Pakistan   总被引:2,自引:1,他引:1  
The Makran accretionary complex shows a distinct bottom-simulating reflector, indicating a thick gas-hydrate-bearing horizon between the deformational front and about 1350 m water depth which seals off the upward flow of gas-charged fluids. A field of presently inactive mud diapirs with elevations up to 65 m was discovered in the abyssal plain seawards of the deformation front, suggesting that in the past conditions were favorable for periodic but localized vigorous mud diapirism. Regional destabilization of the gas hydrate leading to focused flow was observed where deep-penetrating, active faults reach the base of the gas-hydrate layer, as in a deeply incised submarine canyon (2100–2500 m water depth). At this location we discovered seeps of methane and H2S-rich fluids associated with chemoautotrophic vent faunas (e.g., Calyptogena sp.). Driven by the accretionary wedge dynamics, the landward part of the gas-hydrate layer below the Makran margin is being progressively uplifted. Due to reduced hydrostatic pressure and rising ocean bottom-water temperatures, gas hydrates are progressively destabilized and dissociated into hydrate water, methane and H2S. Sediment temperatures lie outside the methane stability field wherever water depth is less than 800 m. Above this depth, upward migration of fluids to the seafloor is unimpeded, thus explaining the abundance of randomly distributed gas seeps observed at water depths of 350 to 800 m. Received: 14 June 1999 / Revision accepted: 6 February 2000  相似文献   
46.
Stable isotopes (C, O, S) and mineralogical studies of the world-class amethyst-geode deposits of the Los Catalanes gemological district, Uruguay, constrain processes operative during mineral deposition. The mineralized basaltic andesites from the Cretaceous Paraná volcanic province are intensely altered to zeolites (clinoptilolite) and clay minerals. Variations in the δ18O values of silica minerals in geodes (chalcedony, quartz, and amethyst) are much larger and the values generally somewhat lower (21.2–31.5‰) in the Uruguayan deposits than in the Ametista do Sul area of southern Brazil. The range of δ34S values (−15.0 to −0.3‰) of altered basaltic rocks requires (in addition to sulfur of magmatic origin) the involvement of 34S-depleted sedimentary sulfur from bacterial sulfate reduction. The results delimit the mineralizing processes to a post-eruption environment characterized by low temperature and strong interaction of the lava flows with meteoric water.  相似文献   
47.
The chemistry of cloud multiphase systems was studied within the Kleiner Feldberg Cloud Experiment 1990. The clouds encountered during this experimental campaign could be divided into two categories according to the origin of air masses in which the clouds formed. From the chemical point of view, clouds passing the sampling site during the first period of the campaign (26 October-4 November) were characterized by lower pollutant loading and higher pH, as compared to clouds during the final period of the experimental campaign (10–13 November). The study of multiphase partitioning of the main chemical constituents of the cloud systems and of atmospheric acidity within the multiphase systems themselves (gas + interstitial aerosol + liquid droplets) are presented in this paper. A general lack of gaseous NH3 was found in these cloud systems, which caused a lack of buffer capacity toward acid addition. Evidence supports the hypothesis that the higher acidity of the cloud systems during this final period of the campaign was due to input of HNO3. Our measurements, however, could not determine whether the observed input was due to scavenging of gaseous HNO3 from the air feeding into the cloud, or to heterogeneous HNO3 formation via NO2 oxidation by O3 to NO3 and N2O5. Sulfate in cloud droplets mainly originated from aerosol SO 4 2– scavenging, since S(IV) to S(VI) liquid phase conversion was inhibited due to both lack of H2O2 and low pH of cloud droplets, which made O3 and metal catalyzed S(IV) oxidation inefficient.  相似文献   
48.
During March and April of 1995 a major international field project was conducted at the UMIST field station site on Great Dun Fell in Cumbria, Northern England. The hill cap cloud which frequently envelopes this site was used as a natural flow through reactor to examine the sensitivity of the cloud microphysics to the aerosol entering the cloud and also to investigate the effects of the cloud in changing the aerosol size distribution, chemical composition and associated optical properties. To investigate these processes, detailed measurements of the cloud water chemistry (including the chemistry of sulphur compounds, organic and inorganic oxidised nitrogen and ammonia), cloud microphysics and properties of the aerosol and trace gas concentrations upwind and downwind of the cap cloud were undertaken. It was found that the cloud droplet number was generally strongly correlated to aerosol number concentration, with up to 2000 activated droplets cm−3 being observed in the most polluted conditions. In such conditions it was inferred that hygroscopic organic compounds were important in the activation process. Often, the size distribution of the aerosol was substantially modified by the cloud processing, largely due to the aqueous phase oxidation of S(IV) to sulphate by hydrogen peroxide, but also through the uptake and fixing of gas phase nitric acid as nitrate, increasing the calculated optical scattering of the aerosol substantially (by up to 24%). New particle formation was also observed in the ultrafine aerosol mode (at about 5 nm) downwind of the cap cloud, particularly in conditions of low total aerosol surface area and in the presence of ammonia and HCl gases. This was seen to occur at night as well as during the day via a mechanism which is not yet understood. The implications of these results for parameterising aerosol growth in Global Climate Models are explored.  相似文献   
49.
Results from the study of experimental plots at Hubbard Brook, New Hampshire for the years 1987, 1988, 1993, 1994, 1995, and 1996 show that the water draining from under a plot planted with pine trees exhibits its highest alkalinity during the year at about the time of spring snowmelt. This high alkalinity is believed to be due to buildup during the winter under a snow cover. The soil solutions are protected from acidic precipitation by the snow, and the natural process of the reaction of organic acids and carbonic acid with minerals and exchange complexes to form dissolved HCO3 (and organic anions) proceeds with an increase in alkalinity through the winter. When the snow melts the acidic meltwater mixes with, neutralizes and displaces the water previously occupying the soil interstices. This leads to a decided drop in alkalinity of the drainage water. The alkalinity buildup under the pine plot was found to be two to ten times greater than under a similar plot containing no higher plants. This strongly emphasizes the important role of plants, in their ability to produce organic acids and high levels of CO2, in accelerating the weathering of silicate minerals.  相似文献   
50.
Batch and column experiments were conducted to examine the capability of naturally formed hematite and siderite to remove As from drinking water. Results show that both minerals were able to remove As from aqueous solutions, but with different efficiencies. In general, each material removed arsenate much more efficiently than As–DMA (dimethylarsinic acid), with the lowest adsorption efficiency for arsenite. The best removal efficiency for As species was obtained using a hematite, with a grain size range between 0.25 and 0.50 mm. The adsorption capacity for inorganic As(V) reached 202 μg/g. The pH generally had a great impact on the arsenate removal by the Fe minerals studied, while arsenite removal was slightly dependent on the initial pH of between 3 and 10. The presence of phosphate always had a negative effect on arsenate adsorption, due to competitive adsorption between them. A column packed with hematite in the upper half and siderite in the lower half with a grain size range of 0.25–0.5 mm proved to be an efficient reactive filter for the removal of all As species, causing a decrease in As concentration from 500 μg/L (including 200 μg/L As(V) as arsenate, 200 μg/L As(III) as arsenite and 100 μg/L As(V) as DMA) to less than 10 μg/L after 1055 pore volumes of water were filtered at a flow rate of 0.51 mL/min. After 2340 pore volumes passed through the column filter, the total inorganic As in the effluent was less than 5 μg/L. The total As load in the column filter was estimated to be 0.164 mg/g. Results of μ-synchrotron X-ray fluorescence analysis (μ-XRFA) suggest that coatings of fresh Fe(III) oxides, formed on the surface of the siderite grains after two weeks of operation, greatly increased the adsorption capacity of the filling material towards As.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号