首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   978篇
  免费   20篇
  国内免费   1篇
测绘学   25篇
大气科学   36篇
地球物理   227篇
地质学   444篇
海洋学   71篇
天文学   106篇
综合类   7篇
自然地理   83篇
  2020年   7篇
  2019年   10篇
  2018年   21篇
  2017年   16篇
  2016年   24篇
  2015年   12篇
  2014年   23篇
  2013年   46篇
  2012年   36篇
  2011年   39篇
  2010年   44篇
  2009年   57篇
  2008年   50篇
  2007年   39篇
  2006年   43篇
  2005年   52篇
  2004年   43篇
  2003年   50篇
  2002年   25篇
  2001年   22篇
  2000年   21篇
  1999年   12篇
  1998年   17篇
  1997年   14篇
  1996年   20篇
  1995年   8篇
  1994年   6篇
  1993年   12篇
  1992年   11篇
  1991年   13篇
  1990年   8篇
  1989年   12篇
  1988年   10篇
  1987年   12篇
  1986年   10篇
  1985年   15篇
  1984年   15篇
  1983年   8篇
  1982年   8篇
  1981年   11篇
  1980年   12篇
  1979年   9篇
  1978年   6篇
  1977年   6篇
  1976年   4篇
  1975年   9篇
  1974年   7篇
  1973年   4篇
  1970年   5篇
  1969年   5篇
排序方式: 共有999条查询结果,搜索用时 15 毫秒
41.
We have combined metal-silicate partitioning data from the literature with new experimental results at 1.5-8 GPa and 1480-2000 °C to parameterize the effects of pressure, temperature and composition on the partitioning of V, Cr and Nb between liquid Fe metal (with low S and C content) and silicate melt.Using information from the steelmaking literature to correct for interactions in the metal phase, we find that, for peridotitic silicate melts, metal-silicate partition coefficients are given by:
  相似文献   
42.
Ectomycorrhiza-forming fungi (EMF) alter the nutrient-acquisition capabilities of vascular plants, and may play an important role in mineral weathering and the partitioning of products of weathering in soils under nutrient-limited conditions. In this study, we isolated the weathering function of Suillus tomentosus in liquid-cultures with biotite micas incubated at room temperature. We hypothesized that the fungus would accelerate weathering by hyphal attachment to biotite surfaces and transmission of nutrient cations via direct exchange into the fungal biomass. We combined a mass-balance approach with scanning electron microscopy (SEM) and atomic force microscopy (AFM) to estimate weathering rates and study dissolution features on biotite surfaces. Weathering of biotite flakes was about 2-3 orders of magnitude faster in shaken liquid-cultures with fungus compared to shaken controls without fungus, but with added inorganic acids. Adding fungus in nonshaken cultures caused a higher dissolution rate than in inorganic pH controls without fungus, but it was not significantly faster than organic pH controls without fungus. The K+, Mg2+ and Fe2+ from biotite were preferentially partitioned into fungal biomass in the shaken cultures, while in the nonshaken cultures, K+ and Mg2+ was lost from biomass and Fe2+ bioaccumulated much less. Fungal hyphae attached to biotite surfaces, but no significant surface changes were detected by SEM. When cultures were shaken, the AFM images of basal planes appeared to be rougher and had abundant dissolution channels, but such channel development was minor in nonshaken conditions. Even under shaken conditions the channels only accounted for only 1/100 of the total dissolution rate of 2.7 × 10−10 mol of biotite m−2 s−1. The results suggest that fungal weathering predominantly occurred not by attachment and direct transfer of nutrients via hyphae, but because of the acidification of the bulk liquid by organic acids, fungal respiration (CO2), and complexation of cations which accelerated dissolution of biotite. Results further suggest that both carbohydrate source (abundant here) and a host with which nutrients are exchanged (missing here) may be required for EMF to exert an important weathering effect in soils. Unsaturated conditions and physical dispersal of nutrient-rich minerals in soils may also confer a benefit for hyphal growth and attachment, and promote the attachment-mediated weathering which has been observed elsewhere on soil mineral surfaces.  相似文献   
43.
Recent findings on the distribution of methylated mercury (MeHgT) in waters have highlighted the importance of organic carbon remineralization on the production of these compounds in the open ocean. Here, we present the first time-series (20 monthly samplings between July 2007 and May 2009) of high-resolution vertical profiles (10-12 depths in a 2350 m water column) of MeHgT distributions in an open ocean environment, the Ligurian Sea (North-western Mediterranean Sea). Concentrations varied within the sub-picomolar range (general mean: 0.30 ± 0.17 pmol L−1, n = 214) with the lowest values at the surface, increasing with depth up to the oxygen minimum zone, and decreasing slowly at greater depth. Concentrations in the surface waters never exceeded 0.15 pmol L−1, while the highest concentrations (up to 0.82 pmol L−1) were associated to the hypoxycline during the autumn bloom. A detailed vertical MeHgT profile reveals a “double-peak” pattern, coincidental with the two microbial layers described by Tanaka and Rassoulzadegan (2002), the so-called “microbial food web” in the euphotic zone (<100 m) and the “microbial loop” in the aphotic zone (>100 m). Temporal variations in the MeHgT abundance and distribution in the water column were linked to seasonality. The highest MeHgT concentrations were found in the oxygen minimum zone during the period of stratification, and coincide with the greatest abundance of nano- and picophytoplankton (cyanobacteria, nanoflagellates, etc.) in the euphotic layer. None of our deep MeHgT measurements (∼100 m above the sea bottom) revealed a significant sedimentary source of MeHgT. We explored the correlation between MeHgT concentrations and the apparent oxygen utilization, a proxy of organic matter remineralization, over the study period. Results of this study strengthen the hypothesis that net mercury methylation in the open ocean occurs in the water column, is linked to organic matter regeneration, and is promoted by the presence of small-sized nano- and picophytoplankton, that dominate under oligotrophic conditions.  相似文献   
44.
Erratum     
  相似文献   
45.
We present the results of a multidisciplinary study of the Ms = 6.2, 1995, June 15, Aigion earthquake (Gulf of Corinth, Greece). In order to constrain the rupture geometry, we used all available data from seismology (local, regional and teleseismic records of the mainshock and of aftershocks), geodesy (GPS and SAR interferometry), and tectonics. Part of these data were obtained during a postseismic field study consisting of the surveying of 24 GPS points, the temporary installation of 20 digital seismometers, and a detailed field investigation for surface fault break. The Aigion fault was the only fault onland which showed detectable breaks (< 4 cm). We relocated the mainshock hypocenter at 10 km in depth, 38 ° 21.7 N, 22 ° 12.0 E, about 15 km NNE to the damaged city of Aigion. The modeling of teleseismic P and SH waves provides a seismic moment Mo = 3.4 1018 N.m, a well constrained focal mechanism (strike 277 °, dip 33 °, rake – 77°), at a centroidal depth of 7.2 km, consistent with the NEIC and the revised Harvard determinations. It thus involved almost pure normal faulting in agreement with the tectonics of the Gulf. The horizontal GPS displacements corrected for the opening of the gulf (1.5 cm/year) show a well-resolved 7 cm northward motion above the hypocenter, which eliminates the possibility of a steep, south-dipping fault plane. Fitting the S-wave polarization at SERG, 10 km from the epicenter, with a 33° northward dipping plane implies a hypocentral depth greater than 10 km. The north dipping fault plane provides a poor fit to the GPS data at the southern points when a homogeneous elastic half-space is considered: the best fit geodetic model is obtained for a fault shallower by 2 km, assuming the same dip. We show with a two-dimensional model that this depth difference is probably due to the distorting effect of the shallow, low-rigidity sediments of the gulf and of its edges. The best-fit fault model, with dimensions 9 km E–W and 15 km along dip, and a 0.87 m uniform slip, fits InSAR data covering the time of the earthquake. The fault is located about 10 km east-northeast to the Aigion fault, whose surface breaks thus appears as secondary features. The rupture lasted 4 to 5 s, propagating southward and upward on a fault probably outcropping offshore, near the southern edge of the gulf. In the shallowest 4 km, the slip – if any – has not exceeded about 30 cm. This geometry implies a large directivity effect in Aigion, in agreement with the accelerogram aig which shows a short duration (2 s) and a large amplitude (0.5 g) of the direct S acceleration. This unusual low-angle normal faulting may have been favoured by a low-friction, high pore pressure fault zone, or by a rotation of the stress directions due to the possible dip towards the south of the brittle-ductile transition zone. This fault cannot be responsible for the long term topography of the rift, which is controlled by larger normal faults with larger dip angles, implying either a seldom, or a more recently started activity of such low angle faults in the central part of the rift.  相似文献   
46.
Detailed echo‐sounder and acoustic Doppler velocimeter measurements are used to assess the temporal and spatial structure of turbulent flow over a mobile dune in a wide, low‐gradient, alluvial reach of the Green River. Based on the geometric position of the sensor over the bedforms, measurements were taken in the wake, in transitional flow at the bedform crest, and in the internal boundary layer. Spatial distributions of Reynolds shear stress, turbulent kinetic energy, turbulence intensity, and correlation coefficient are qualitatively consistent with those over fixed, two‐dimensional bedforms in laboratory flows. Spectral and cospectral analysis demonstrates that energy levels in the lee of the crest (i.e. wake) are two to four times greater than over the crest itself, with minima over the stoss slope (within the developing internal boundary layer). The frequency structure in the wake is sharply defined with single, dominant peaks. Peak and total spectral and cross‐spectral energies vary over the bedform in a manner consistent with wave‐like perturbations that ‘break’ or ‘roll up’ into vortices that amalgamate, grow in size, and eventually diffuse as they are advected downstream. Fluid oscillations in the lee of the dune demonstrate Strouhal similarity between laboratory and field environments, and correspondence between the peak frequencies of these oscillations and the periodicity of surface boils was observed in the field. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
47.
Soil Organic Carbon (SOC) is one of the key soil properties, but the large spatial variation makes continuous mapping a complex task. Imaging spectroscopy has proven to be an useful technique for mapping of soil properties, but the applicability decreases rapidly when fields are partially covered with vegetation. In this paper we show that with only a few percent fractional maize cover the accuracy of a Partial Least Square Regression (PLSR) based SOC prediction model drops dramatically. However, this problem can be solved with the use of spectral unmixing techniques. First, the fractional maize cover is determined with linear spectral unmixing, taking the illumination and observation angles into account. In a next step the influence of maize is filtered out from the spectral signal by a new procedure termed Residual Spectral Unmixing (RSU). The residual soil spectra resulting from this procedure are used for mapping of SOC using PLSR, which could be done with accuracies comparable to studies performed on bare soil surfaces (Root Mean Standard Error of Calibration = 1.34 g/kg and Root Mean Standard Error of Prediction = 1.65 g/kg). With the presented RSU approach it is possible to filter out the influence of maize from the mixed spectra, and the residual soil spectra contain enough information for mapping of the SOC distribution within agricultural fields. This can improve the applicability of airborne imaging spectroscopy for soil studies in temperate climates, since the use of the RSU approach can extend the flight-window which is often constrained by the presence of vegetation.  相似文献   
48.
49.
50.
Understanding the mobility of chemical elements during fluid–rock interactions is critical to assess the geochemical evolution of a rock undergoing burial and metamorphism and, more generally, to constrain the geochemical budget of the subduction factory. In particular, determining the behavior and mobility of Ti in aqueous fluids constitutes a great challenge that is still under scrutiny. Here, we study plant fossils preserved in blueschist metasedimentary rocks from the Marybank Formation (New Zealand). Using scanning and transmission electron microscopies (SEM and TEM), we show that the carbonaceous material (CM) composing the fossils contains abundant nano-inclusions of Ti- and Fe-oxides. These nanocrystals are mainly anatase, rutile, and Fe–Ti oxides. The mineral composition observed within the fossils is significantly different from that detected in the surrounding rock matrix. We propose that Ti and Fe might have been mobilized by the alteration of a detrital Ti–Fe-rich protolith during an early diagenetic event under acidic and reducing conditions. Aqueous fluids rich in organic ligands released by the degradation of organic matter may have been involved. Moreover, using mass balance and petrological observations, we show that the contrasted mineralogy between the rock matrix and the fossil CM might be the consequence of the chemical isolation of fossil CM during the prograde path of the rock. Such an isolation results from the early formation of quartz and Fe-rich phyllosilicate layers enclosing the fossil as characterized by SEM and TEM investigations. Overall, this study shows that investigating minerals associated with CM down to the nanometer scale in metamorphic rocks can provide a precious record of early prograde geochemical conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号