首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   7篇
  国内免费   1篇
测绘学   2篇
大气科学   11篇
地球物理   42篇
地质学   66篇
海洋学   20篇
天文学   26篇
综合类   1篇
自然地理   8篇
  2024年   1篇
  2023年   3篇
  2022年   3篇
  2021年   1篇
  2020年   3篇
  2019年   4篇
  2018年   7篇
  2016年   9篇
  2015年   7篇
  2014年   7篇
  2013年   20篇
  2012年   2篇
  2011年   16篇
  2010年   7篇
  2009年   8篇
  2008年   11篇
  2007年   4篇
  2006年   5篇
  2005年   4篇
  2004年   5篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   7篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
  1976年   2篇
  1970年   2篇
排序方式: 共有176条查询结果,搜索用时 31 毫秒
21.
The weathering of mantle peridotite tectonically exposed to the atmosphere leads commonly to natural carbonation processes. Extensive cryptocrystalline magnesite veins and stock-work are widespread in the serpentinite sole of the New Caledonia ophiolite. Silica is systematically associated with magnesite. It is commonly admitted that Mg and Si are released during the laterization of overlying peridotites. Thus, the occurrence of these veins is generally attributed to a per descensum mechanism that involves the infiltration of meteoric waters enriched in dissolved atmospheric CO2. In this study, we investigate serpentinite carbonation processes, and related silicification, based on a detailed petrographic and crystal chemical study of serpentinites. The relationships between serpentine and alteration products are described using an original method for the analysis of micro-X-ray fluorescence images performed at the centimeter scale. Our investigations highlight a carbonation mechanism, together with precipitation of amorphous silica and sepiolite, based on a dissolution–precipitation process. In contrast with the per descensum Mg/Si-enrichment model that is mainly concentrated in rock fractures, dissolution–precipitation process is much more pervasive. Thus, although the texture of rocks remains relatively preserved, this process extends more widely into the rock and may represent a major part of total carbonation of the ophiolite.  相似文献   
22.
23.
Abstract— We describe a previously unreported meteorite found in Axtell, Texas, in 1943. Based on the mineralogical composition and texture of its matrix and the sizes and abundance of chondrules, we classify it as a CV3 carbonaceous chondrite. The dominant opaque phase in the chondrules is magnetite, and that in refractory inclusions is Ni-rich NiFe metal (awaruite). Axtell, therefore, belongs to the oxidized subgroup of CV3 chondrites, although unlike Allende it escaped strong sulfidation. The meteorite bears a strong textural resemblance to Allende, and its chondrule population and matrix appear to be quite similar to those of Allende, but its refractory inclusions, thermoluminescence properties, and cosmogenic 60Co abundances are not. Our data are consistent with a terrestrial age for Axtell of ~100 years and a metamorphic grade slightly lower than that of Allende.  相似文献   
24.
Abstract— We review induced thermoluminescence (TL) data for 102 unequilibrated ordinary chondrites (UOCs), many data just published in abstracts, in order to identify particularly primitive UOCs and further explore TL systematics that may have implications for the history of the chondrites and their parent body. We have identified 11 UOCs of petrologic types 3.0–3.1: Adrar 003, Elephant Moraine (EET) 90066, EET 90161, Grosvenor Mountains (GRO) 95502, Lewis Cliff (LEW) 88477, Meteorite Hills (MET) 96503, Yamato (Y)‐790787, Y‐791324, Y‐791558, Y‐793565, and Y‐793596. These samples represent an important new resource for researchers interested in the nature of primitive solar system materials. Previously reported trends in which TL sensitivity increases with TL peak temperature and TL peak width, which we interpret in terms of crystallization of feldspar in the ordered or disordered forms during metamorphism, are confirmed by the new data. Importantly, the present data strengthen the trend described earlier in which the mean level of metamorphism experienced by UOCs increases along the series LL, L and H. This suggests either different burial depths for the UOCs from each class, or formation at similar depths in regoliths of different thickness.  相似文献   
25.
26.
Benoit Lavraud and Peter J Cargill explain the structure of the magnetospheric cusps and their relationship with the solar wind, as revealed by Cluster data.  相似文献   
27.
Persistent inorganic constitutents preserved in sediments of aquatic ecosystems record temporal variability of biogeochemical functioning and anthropogenic impacts.210Pb and137Cs dating techniques were used to study the past variations of heavy metals (Pb, Cu, and Zn) and accumulation rates of sediments for Tivoli South Bay, in the Hudson River National Estuarine Research Reserve ecosystem. South Bay, a tidal freshwater embayment of the Hudson, may play an important role in the sediment dynamics of this important river. The measured sedimentation rate range of 0.59 to 2.92 cm yr−1 suggests that rapid accumulation occurred during the time period represented by the length of the cores (approximately the past 50 yr). Direct measurements of sediment exchange with the Hudson River reveal high variability in the sediment flux from one tidal cycle to the next. Net exchange does not seem to be adequate to explain sediment accumulation rates in the bay as measured by210Pb and137Cs. The difference may be supplied from upland streams or the Hudson River during storm events. Concentrations of the metals Pb, Cu and Zn were found to be well correlated with each other within individual cores at five of six sites tested. This suggests a common proximate source for the three metals at a specific site. The evidence is consistent with mixing in some environmental compartment before delivery to the bay. While metals self-correlate within individual cores, absolute concentrations, depth distribution patterns, and ratios of the metals to each other vary among the cores collected at different locations within the bay. Organic matter, Fe content, and particle size distribution of sediments do not account for the intercore variations in metal concentration. It is likely that cores collected from different sites may have derived metals from different sources, such as watershed streams and tidal exchange with the Hudson River.  相似文献   
28.
Many small estuaries are influenced by flow restrictions resulting from transportation rights-of-way and other causes. The biogeochemical functioning and history of such systems can be evaluated through study of their sediments. Ten long and six short cores were collected from the length of Jordan Cove, Connecticut, a Long Island Sound subestuary, and analyzed for stratigraphy, radionuclides (14C, 210Pb, 226Ra, 137Cs, and 60Co), and metals (Ag, Cd, Cu, Pb, Zn, Fe, and Al). For at least 3,800 yr, rising sea level has gradually inundated Jordan Cove, filling it with mud similar to that currently being deposited there. Long-term sediment accumulation in the cove averaged close to 0.1 cm yr−1 over the last three millennia. Recent sediment accumulation rates decrease inland from 0.84 cm yr−1 to 0.40 cm yr−1, and are slightly faster than relative sea-level rise at this site (0.3 cm yr−1). Similarity of depth distributions of trace metals was used to confirm relative sediment accumulation rates. 60Co and Ag are derived from sources outside the cove and its watershed, presumably the Millstone nuclear power plant and regional contaminated sediments, respectively. The combined data suggest that Long Island Sound is an important source of sediment to the cove; a minor part of total sediment is supplied from the local watershed. Trace metal levels are strongly correlated with Fe but not with either organic matter or Al. Sediment quality has declined in the cove over the past 60 yr, but only slightly. Cu, Pb, and Zn data correlate strongly with Fe but not with either organic matter or aluminum. Ratios of Ag to Fe and to trace metals suggest that Ag in the cove is derived almost entirely from Long Island Sound. This result supports the notion that Fenormalized Ag can serve as a better tracer of some kinds of contamination than more common and abundant metals, like Cu, Pb, and Zn. *** DIRECT SUPPORT *** A01BY085 00008  相似文献   
29.
A comprehensive understanding of the dynamics of erosion and sedimentation in reservoirs under different management conditions is required to anticipate sedimentation issues and implement effective sediment management strategies. This paper describes a unique approach combining fluvial geomorphology tools and morphodynamic modeling for analyzing the sediment dynamics of an elongated hydropower reservoir subjected to management operations: the Génissiat Reservoir on the Rhône River. Functional sub‐reaches representative of the reservoir morphodynamics were delineated by adapting natural river segmentation methods to elongated reservoirs. The segmentation revealed the link between the spatial and temporal reservoir changes and the variability of longitudinal flow conditions during reservoir management operations. An innovative modeling strategy, incorporating the reservoir segmentation into two sediment transport codes, was implemented to simulate the dynamics of erosion and sedimentation at the reach scale during historic events. One code used a bedload approach, based on the Exner equation with a transport capacity formula, and the other used a suspended load approach based on the advection–dispersion equation. This strategy provided a fair quantification of the dynamics of erosion and sedimentation at the reach scale during different management operations. This study showed that the reservoir morphodynamics is controlled by bedload transport in upper reaches, graded suspended load transport of sand in middle reaches and suspended load transport of fine sediments in lower reaches. Eventually, it allowed a better understanding of the impact of dam management on sediment dynamics. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号