首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   674篇
  免费   38篇
  国内免费   10篇
测绘学   41篇
大气科学   108篇
地球物理   167篇
地质学   251篇
海洋学   44篇
天文学   60篇
综合类   1篇
自然地理   50篇
  2023年   3篇
  2022年   5篇
  2021年   22篇
  2020年   38篇
  2019年   19篇
  2018年   26篇
  2017年   26篇
  2016年   43篇
  2015年   32篇
  2014年   37篇
  2013年   37篇
  2012年   40篇
  2011年   58篇
  2010年   48篇
  2009年   49篇
  2008年   45篇
  2007年   28篇
  2006年   23篇
  2005年   13篇
  2004年   18篇
  2003年   19篇
  2002年   7篇
  2001年   10篇
  2000年   7篇
  1999年   3篇
  1998年   6篇
  1997年   3篇
  1995年   6篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   9篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有722条查询结果,搜索用时 343 毫秒
621.
622.
623.
624.
Human activities have diverse and profound impacts on ecosystem carbon cycles. The Piedmont ecoregion in the eastern United States has undergone significant land use and land cover change in the past few decades. The purpose of this study was to use newly available land use and land cover change data to quantify carbon changes within the ecoregion. Land use and land cover change data (60-m spatial resolution) derived from sequential remotely sensed Landsat imagery were used to generate 960-m resolution land cover change maps for the Piedmont ecoregion. These maps were used in the Integrated Biosphere Simulator (IBIS) to simulate ecosystem carbon stock and flux changes from 1971 to 2010. Results show that land use change, especially urbanization and forest harvest had significant impacts on carbon sources and sinks. From 1971 to 2010, forest ecosystems sequestered 0.25 Mg C ha?1 yr?1, while agricultural ecosystems sequestered 0.03 Mg C ha?1 yr?1. The total ecosystem C stock increased from 2271 Tg C in 1971 to 2402 Tg C in 2010, with an annual average increase of 3.3 Tg C yr?1. Terrestrial lands in the Piedmont ecoregion were estimated to be weak net carbon sink during the study period. The major factors contributing to the carbon sink were forest growth and afforestation; the major factors contributing to terrestrial emissions were human induced land cover change, especially urbanization and forest harvest. An additional amount of carbon continues to be stored in harvested wood products. If this pool were included the carbon sink would be stronger.  相似文献   
625.
Social capital has the potential to influence the success of biodiverse carbon plantings in the face of uncertainty amongst rural landholders about the need or efficacy of efforts to address climate change through tree planting. We conducted 17 face-to-face semi-structured interviews with landholders in Victoria, Australia who voluntarily participate in biodiverse carbon plantings on their land, focusing in particular on the role of social capital for understanding how ‘early adopters' can advocate for programs locally. The interviews revealed the importance of social networks and the profound impact of trusted peers on the diffusion of carbon planting schemes. These social capital dimensions are especially important for shaping ongoing participation and the ways in which participants become active agents in trusted relationships that influence the participation of others. Our results suggest that the positive impact of social networks can counteract doubts about the validity of climate adaptation responses such as carbon planting, and enable landholders to connect the program with their existing stewardship motivations. The ability for early adopters of the program to demonstrate the physical materialisation of their plantings to others was vital to this process. We propose that targeting champions and trusted peers in local communities could accelerate the proliferation of biodiverse carbon planting schemes.  相似文献   
626.
627.
By creating novel habitats, habitat‐modifying species can alter patterns of diversity and abundance in marine communities. Many sea urchins are important habitat modifiers in tropical and temperate systems. By eroding rocky substrata, urchins can create a mosaic of urchin‐sized cavities or pits separated by exposed, often flat surfaces. These microhabitats appear to harbor distinct assemblages of species. We investigated how a temperate rocky intertidal community uses three small‐scale (<100 cm2) microhabitats created by or adjacent to populations of the purple sea urchin (Strongylocentrotus purpuratus): pits occupied by urchins, unoccupied pits, and adjacent flat spaces. In tidepools, flat spaces harbored the highest percent cover of algae and sessile fauna, followed by empty pits and then occupied pits. The Shannon diversity and richness of these sessile taxa were significantly higher in flat spaces and empty pits than in occupied pits. The composition of these primary space holders in the microhabitats also varied. Unlike primary space holders, mobile fauna exhibited higher diversity and richness in empty pits than in flat spaces and occupied pits, although results were not significant. The protective empty pit microhabitat harbored the highest densities of most trophic functional groups. Herbivores, however, were densest in flat spaces, concordant with high algal coverage. These results suggest the habitats created by S. purpuratus in addition to its biological activities alter community structure at spatial scales finer than those typically considered for sea urchins.  相似文献   
628.
Microbially mediated sulfate reduction affects the isotopic composition of dissolved and solid sulfur species in marine sediments. Experiments and field data show that the composition is also modified in the presence of sulfate-reducing microorganisms. This has been attributed either to a kinetic isotope effect during the reduction of sulfate to sulfite, cell-internal exchange reactions between enzymatically-activated sulfate (APS), and/or sulfite with cytoplasmic water. The isotopic fingerprint of these processes may be further modified by the cell-external reoxidation of sulfide to elemental sulfur, and the subsequent disproportionation to sulfide and sulfate or by the oxidation of sulfite to sulfate. Here we report values from interstitial water samples of ODP Leg 182 (Site 1130) and provide the mathematical framework to describe the oxygen isotope fractionation of sulfate during microbial sulfate reduction. We show that a purely kinetic model is unable to explain our data, and that the data are well explained by a model using oxygen isotope exchange reactions. We propose that the oxygen isotope exchange occurs between APS and cytoplasmic water, and/or between sulfite and adenosine monophosphate (AMP) during APS formation. Model calculations show that cell external reoxidation of reduced sulfur species would require up to 3000 mol/m3 of an oxidant at ODP Site 1130, which is incompatible with the sediment geochemical data. In addition, we show that the volumetric fluxes required to explain the observed data are on average 14 times higher than the volumetric sulfate reduction rates (SRR) obtained from inverse modeling of the porewater data. The ratio between the gross sulfate flux into the microbes and the net sulfate flux through the microbes is depth invariant, and independent of sulfide concentrations. This suggests that both fluxes are controlled by cell density and that cell-specific sulfate reduction rates remain constant with depth.  相似文献   
629.
630.
In response to peatland degradation by human activities worldwide, restoration through gully blocking is now being implemented in an attempt to return valuable ecological and hydrological services to degraded systems. Re‐establishing these services requires an understanding of how systems have formed and evolved in order to establish conditions that assist with physical and ecological recovery. However, management of peatlands and swamps continues without prior investigation into the environmental history of these ecosystems. This study investigates stratigraphy, sediment ages and peat forming potential within three Temperate Highland Peat Swamps on Sandstone in the Blue Mountains, NSW. These swamps are listed as Endangered Ecological Communities under the Environment Protection and Biodiversity Conservation Act 1999 (Cwlth) and the Threatened Species Conservation Act 1995 (NSW). High discontinuity in sediment structure, peat forming potential and timeframes of swamp initiation were observed across the three swamps. This localised variation reflects the complex geomorphic processes acting within and between these systems. Such data provides scientists and managers with key indicators to assess timeframes over which infilling, vegetation establishment and peat formation occurs. These tools can guide prioritisation, conservation and financial expenditure for the management and rehabilitation of temperate peat swamps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号