首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   677篇
  免费   39篇
  国内免费   10篇
测绘学   41篇
大气科学   108篇
地球物理   168篇
地质学   251篇
海洋学   44篇
天文学   62篇
综合类   1篇
自然地理   51篇
  2023年   3篇
  2022年   5篇
  2021年   22篇
  2020年   38篇
  2019年   19篇
  2018年   26篇
  2017年   27篇
  2016年   43篇
  2015年   32篇
  2014年   37篇
  2013年   37篇
  2012年   40篇
  2011年   58篇
  2010年   48篇
  2009年   49篇
  2008年   45篇
  2007年   29篇
  2006年   23篇
  2005年   13篇
  2004年   18篇
  2003年   19篇
  2002年   7篇
  2001年   10篇
  2000年   7篇
  1999年   3篇
  1998年   6篇
  1997年   3篇
  1995年   6篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   9篇
  1983年   2篇
  1982年   1篇
  1980年   3篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有726条查询结果,搜索用时 31 毫秒
601.
In West Africa, agriculture, mainly rainfed, is a major economic sector and the one most vulnerable to climate change. A meta-database of future crop yields, built up from 16 recent studies, is used to provide an overall assessment of the potential impact of climate change on yields, and to analyze sources of uncertainty.Despite a large dispersion of yield changes ranging from −50% to +90%, the median is a yield loss near −11%. This negative impact is assessed by both empirical and process-based crop models whereas the Ricardian approach gives very contrasted results, even within a single study. The predicted impact is larger in northern West Africa (Sudano-Sahelian countries, −18% median response) than in southern West Africa (Guinean countries, −13%) which is likely due to drier and warmer projections in the northern part of West Africa. Moreover, negative impacts on crop productivity increase in severity as warming intensifies, with a median yield loss near −15% with most intense warming, highlighting the importance of global warming mitigation.The consistently negative impact of climate change results mainly from the temperature whose increase projected by climate models is much larger relative to precipitation change. However, rainfall changes, still uncertain in climate projections, have the potential to exacerbate or mitigate this impact depending on whether rainfall decreases or increases. Finally, results highlight the pivotal role that the carbon fertilization effect may have on the sign and amplitude of change in crop yields. This effect is particularly strong for a high carbon dioxide concentration scenario and for C3 crops (e.g. soybean, cassava). As staple crops are mainly C4 (e.g. maize, millet, sorghum) in WA, this positive effect is less significant for the region.  相似文献   
602.
This study analyzed the foraging behavior of the gastropod Nassarius pullus on garbage-impacted sandy shores of Talim Bay, Batangas, Philippines. The effect of different levels of plastic garbage cover on foraging efficiency was investigated. Controlled in situ baiting experiments were conducted to quantify aspects of foraging behavior as affected by the levels of plastic litter cover in the foraging area. The results of the study indicated that the gastropod’s efficiency in locating and in moving towards a food item generally decreased as the level of plastic cover increased. Prolonged food searching time and increased self-burial in sand were highly correlated with increased plastic cover. The accuracy of orientation towards the actual position of the bait decreased significantly when the amount of plastic cover increased to 50%. These results are consistent with the significant decreases in the abundance of the gastropod observed during periods of deposition of large amounts of plastic and other debris on the shore.  相似文献   
603.
Over the last century, geomorphic processes along the Middle Rio Grande have been altered by flood control and bank stabilization projects, intensified land and water use, and climate change. In response to potential risks to infrastructure and ecological integrity, recent (1985–2008) adjustment was investigated and historic (1918–1985) changes in Rio Grande channel planform through the Albuquerque, New Mexico, area were reviewed, especially in relation to changes in annual peak discharge and river engineering measures. Using a GIS, channel characteristics were digitized from georeferenced photographs and analyzed with particular attention to quantifying potential measurement error and its propagation. Error associated with average channel widths and channel area ranged between 4 and 13%. For smaller polygons, e.g. islands, error was higher (11 to 40% for width and >200% for area) because width error is large relative to polygon width. Between 1918 and 1963, average channel widths decreased 8 m/yr, from 516 ± 67 m to 176 ± 7 m, mostly due to decreasing peak flows and the implementation of flood control and other engineering measures. From 1985 to 2008, widths decreased 0·7 m/yr, from 176 ± 23 m to 146 ± 5 m, accompanied by an increase in vegetated island area which largely coincided with low flow periods. Narrowing was concentrated at tributary inputs and in the upstream part of the reach, where bedload trapping by Cochiti Dam has caused degradation. Bank protection structures and dense vegetation limit bank erosion in the reach, but erosion is significant where expanding islands, incision, and increased meandering force water against banks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
604.
Foraminiferal analyses of 404 contiguous samples, supported by diatom, lithologic, geochronologic and seismic data, reveal both rapid and gradual Holocene paleoenvironmental changes in an 8.21-m vibracore taken from southern Pamlico Sound, North Carolina. Data record initial flooding of a latest Pleistocene river drainage and the formation of an estuary 9000 yr ago. Estuarine conditions were punctuated by two intervals of marine influence from approximately 4100 to 3700 and 1150 to 500 cal yr BP. Foraminiferal assemblages in the muddy sand facies that accumulated during these intervals contain many well-preserved benthic foraminiferal species, which occur today in open marine settings as deep as the mid shelf, and significant numbers of well-preserved planktonic foraminifera, some typical of Gulf Stream waters. We postulate that these marine-influenced units resulted from temporary destruction of the southern Outer Banks barrier islands by hurricanes. The second increase in marine influence is coeval with increased rate of sea-level rise and a peak in Atlantic tropical cyclone activity during the Medieval Climate Anomaly. This high-resolution analysis demonstrates the range of environmental variability and the rapidity of coastal change that can result from the interplay of changing climate, sea level and geomorphology in an estuarine setting.  相似文献   
605.
This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2010. During this period, 407 earthquakes and 85 quarry blasts were detected and located in the region under consideration. With a total of only 19 events with ML ≥ 2.5, the seismic activity in the year 2010 was below the average over the previous 35 years. The two most noteworthy earthquakes were the ML 3.4 Barrhorn event near Sankt Niklaus (VS) and the ML 3.0 event of Feldkirch, both of which produced shaking of intensity IV.  相似文献   
606.
For lack of sufficient observations, the definition of atmospheric moisture fields (including water vapor and clouds) remains a difficult problem whose solution is essential for improved weather forecasts. Moisture fields are under-observed in time and space, primarily because the distribution of water in the atmosphere is highly variable. Because water is important in weather and climate processes, a significant effort has been expended to develop new or improved remote sensing systems to mitigate this problem. One such system uses ground-based Global Positoning System (GPS) receivers to make accurate all-weather estimates of atmospheric refractivity at very low cost. This largely unanticipated application of GPS had led to a new and potentially significant upper-air observing system for meteorological agencies and researchers around the world (Wolfe & Gutman, 2000). The first and most mature use of GPS for this purpose is in the estimation of integrated (total column) precipitable water vapor above a fixed site (Duan et al., 1996, with improvements by Niell, 1996, and Fang et al., 1998). The techniques currently used by the National Oceanic and Atmospheric Administration's Forecast Systems Laboratory (NOAA/FSL) to collect, process, and distribute GPS water vapor observations are mature and almost ready for transition to operational use. NOAA/FSL has shown that GPS integrated water vapor data can be used effectively in objective (i. e., numerical weather prediction) and subjective weather forecasting. To understand the strengths and limitations of GPS for weather forecasting, it is essential to understant what types of information are currently available to forecasters and modelers, and how models use the data to describe the current and probable future state of the atmosphere. It is also important to understand the current trends in modern weather prediction to ensure that GPS observing system play a significant role in the future. ? 2001 John Wiley & Sons, Inc.  相似文献   
607.
608.
There is increasing concern that avoiding climate change impacts will require proactive adaptation, particularly for infrastructure systems with long lifespans. However, one challenge in adaptation is the uncertainty surrounding climate change projections generated by general circulation models (GCMs). This uncertainty has been addressed in different ways. For example, some researchers use ensembles of GCMs to generate probabilistic climate change projections, but these projections can be highly sensitive to assumptions about model independence and weighting schemes. Because of these issues, others argue that robustness-based approaches to climate adaptation are more appropriate, since they do not rely on a precise probabilistic representation of uncertainty. In this research, we present a new approach for characterizing climate change risks that leverages robust decision frameworks and probabilistic GCM ensembles. The scenario discovery process is used to search across a multi-dimensional space and identify climate scenarios most associated with system failure, and a Bayesian statistical model informed by GCM projections is then developed to estimate the probability of those scenarios. This provides an important advancement in that it can incorporate decision-relevant climate variables beyond mean temperature and precipitation and account for uncertainty in probabilistic estimates in a straightforward way. We also suggest several advancements building on prior approaches to Bayesian modeling of climate change projections to make them more broadly applicable. We demonstrate the methodology using proposed water resources infrastructure in Lake Tana, Ethiopia, where GCM disagreement on changes in future rainfall presents a major challenge for infrastructure planning.  相似文献   
609.
Although carbonate-associated sulfate (CAS) is used widely as a proxy for the sulfur isotope composition of ancient seawater, little is known about the effects of diagenesis on retention of primary δ34S signals. Our case study of the Key Largo Limestone, Pleistocene, Florida, is the first systematic assessment of the impact of meteoric diagenesis on CAS properties. Geochemical and petrographic data show that meteoric diagenesis has affected the exposed coralline facies to varying degrees, yielding differences now expressed as sharp reaction fronts between primary and secondary carbonate minerals within individual coral heads. Specifically, analyses across high-resolution transects in the Key Largo Limestone show that concentrations of strontium and sodium decrease across the recrystallization front from original aragonite to meteoric low-magnesium calcite by factors of roughly 5 and 10, respectively. Predictably, δ18O values decrease across these same fronts. The δ13C relationships are more complex, with the most depleted values observed in the latest-formed calcite. Such trends likely reflect carbon isotope buffering capacity that decreased as reaction progressed, as well as protracted development of soil profiles and the associated terrestrial biomass and thus depleted δ13C during sea-level lowstand. Conversely, δ34S values of CAS vary within a narrow ‘buffered’ range from 20.6 to 22.6‰ (compared to 20.8-22.0‰ of coeval Pleistocene seawater) across the same mineralogical transition, despite sulfate concentrations that drop in the diagenetic calcite by an average factor of 12. Collectively, these data point to robust preservation of primary δ34S for carbonates that have experienced intense meteoric diagenesis, which is encouraging news for those using the isotopic composition of CAS as a paleoceanographic proxy. At the same time, the vulnerability of CAS concentrations to diagenetic resetting is clear.  相似文献   
610.

Background

Carbon storage potential has become an important consideration for land management and planning in the United States. The ability to assess ecosystem carbon balance can help land managers understand the benefits and tradeoffs between different management strategies. This paper demonstrates an application of the Land Use and Carbon Scenario Simulator (LUCAS) model developed for local-scale land management at the Great Dismal Swamp National Wildlife Refuge. We estimate the net ecosystem carbon balance by considering past ecosystem disturbances resulting from storm damage, fire, and land management actions including hydrologic inundation, vegetation clearing, and replanting.

Results

We modeled the annual ecosystem carbon stock and flow rates for the 30-year historic time period of 1985–2015, using age-structured forest growth curves and known data for disturbance events and management activities. The 30-year total net ecosystem production was estimated to be a net sink of 0.97 Tg C. When a hurricane and six historic fire events were considered in the simulation, the Great Dismal Swamp became a net source of 0.89 Tg C. The cumulative above and below-ground carbon loss estimated from the South One and Lateral West fire events totaled 1.70 Tg C, while management activities removed an additional 0.01 Tg C. The carbon loss in below-ground biomass alone totaled 1.38 Tg C, with the balance (0.31 Tg C) coming from above-ground biomass and detritus.

Conclusions

Natural disturbances substantially impact net ecosystem carbon balance in the Great Dismal Swamp. Through alternative management actions such as re-wetting, below-ground biomass loss may have been avoided, resulting in the added carbon storage capacity of 1.38 Tg. Based on two model assumptions used to simulate the peat system, (a burn scar totaling 70 cm in depth, and the soil carbon accumulation rate of 0.36 t C/ha?1/year?1 for Atlantic white cedar), the total soil carbon loss from the South One and Lateral West fires would take approximately 1740 years to re-amass. Due to the impractical time horizon this presents for land managers, this particular loss is considered permanent. Going forward, the baseline carbon stock and flow parameters presented here will be used as reference conditions to model future scenarios of land management and disturbance.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号