首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   677篇
  免费   38篇
  国内免费   10篇
测绘学   41篇
大气科学   108篇
地球物理   167篇
地质学   252篇
海洋学   44篇
天文学   62篇
综合类   1篇
自然地理   50篇
  2023年   3篇
  2022年   5篇
  2021年   22篇
  2020年   38篇
  2019年   20篇
  2018年   26篇
  2017年   26篇
  2016年   43篇
  2015年   32篇
  2014年   37篇
  2013年   37篇
  2012年   40篇
  2011年   58篇
  2010年   48篇
  2009年   50篇
  2008年   45篇
  2007年   28篇
  2006年   23篇
  2005年   13篇
  2004年   18篇
  2003年   19篇
  2002年   7篇
  2001年   10篇
  2000年   7篇
  1999年   3篇
  1998年   6篇
  1997年   3篇
  1995年   6篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   9篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有725条查询结果,搜索用时 15 毫秒
221.
High-resolution, well-calibrated records of lake sediments are critically important for quantitative climate reconstructions, but they remain a methodological and analytical challenge. While several comprehensive paleotemperature reconstructions have been developed across Europe, only a few quantitative high-resolution studies exist for precipitation. Here we present a calibration and verification study of lithoclastic sediment proxies from proglacial Lake Oeschinen (46°30′N, 7°44′E, 1,580 m a.s.l., north–west Swiss Alps) that are sensitive to rainfall for the period AD 1901–2008. We collected two sediment cores, one in 2007 and another in 2011. The sediments are characterized by two facies: (A) mm-laminated clastic varves and (B) turbidites. The annual character of the laminae couplets was confirmed by radiometric dating (210Pb, 137Cs) and independent flood-layer chronomarkers. Individual varves consist of a dark sand-size spring-summer layer enriched in siliciclastic minerals and a lighter clay-size calcite-rich winter layer. Three subtypes of varves are distinguished: Type I with a 1–1.5 mm fining upward sequence; Type II with a distinct fine-sand base up to 3 mm thick; and Type III containing multiple internal microlaminae caused by individual summer rainstorm deposits. Delta-fan surface samples and sediment trap data fingerprint different sediment source areas and transport processes from the watershed and confirm the instant response of sediment flux to rainfall and erosion. Based on a highly accurate, precise and reproducible chronology, we demonstrate that sediment accumulation (varve thickness) is a quantitative predictor for cumulative boreal alpine spring (May–June) and spring/summer (May–August) rainfall (rMJ = 0.71, rMJJA = 0.60, p < 0.01). Bootstrap-based verification of the calibration model reveals a root mean squared error of prediction (RMSEPMJ = 32.7 mm, RMSEPMJJA = 57.8 mm) which is on the order of 10–13 % of mean MJ and MJJA cumulative precipitation, respectively. These results highlight the potential of the Lake Oeschinen sediments for high-resolution reconstructions of past rainfall conditions in the northern Swiss Alps, central and eastern France and south-west Germany.  相似文献   
222.
Using degree distribution to assess network vulnerability represents a promising direction of network analysis.However,the traditional degree distribution model is inadequate for analyzing the vulnerability of spatial networks because it does not take into consideration the geographical aspects of spatial networks.This paper proposes a spatially weighted degree model in which both the functional class and the length of network links are considered to be important factors for determining the node degrees of spatial networks.A weight coefficient is used in this new model to account for the contribution of each factor to the node degree.The proposed model is compared with the traditional degree model and an accessibility-based vulnerability model in the vulnerabil-ity analysis of a highway network.Experiment results indicate that,although node degrees of spatial networks derived from the tra-ditional degree model follow a random distribution,node degrees determined by the spatially weighted model exhibit a scale-free distribution,which is a common characteristic of robust networks.Compared to the accessibility-based model,the proposed model has similar performance in identifying critical nodes but with higher computational efficiency and better ability to reveal the overall vulnerability of a spatial network.  相似文献   
223.
Although it is well known that coseismic gravity changes take place during an earthquake, previous research has not yielded convincing evidence demonstrating that significant gravity changes occur before large earthquakes. Furthermore, even if we suspect that gravity changes occur before large earthquakes, we have yet to demonstrate how to consistently observe these changes for useful earthquake forecast that would bring benefits to society. We analyzed ground gravity survey data obtained in 1998, 2000, 2002, and 2005 at stations of the Crustal Movement Observation Network of China (CMONOC) and examined gravity changes be-fore the occurrence of nine large (Ms≥6.8) earthquakes that ruptured within or near mainland China and Taiwan from November 2001 to August 2008. Results from this analysis show that significant gravity changes occurred across a large region before each of these nine large earthquakes, and these changes were detected by repeated ground gravity surveys through CMONOC. Although these gravity changes were significant, more research is needed to investigate whether these gravity changes could be viewed as precursors of large earthquakes. Limitations and uncertainties in the data include sparseness of the gravity monitoring network, long time intervals between consecutive gravity surveys, inevitable measurement errors, hydrological effects on gravity, and effects of vertical crustal movements on gravity. Based on these observations, we make several recommendations about possible future direc-tions in earthquake-related research using gravity monitoring data.  相似文献   
224.
There is evidence that expected warming trends from increased greenhouse gas (GHG) forcing have been locally ??masked?? by irrigation induced cooling, and it is uncertain how the magnitude of this irrigation masking effect will change in the future. Using an irrigation dataset integrated into a global general circulation model, we investigate the equilibrium magnitude of irrigation induced cooling under modern (Year 2000) and increased (A1B Scenario, Year 2050) GHG forcing, using modern irrigation rates in both scenarios. For the modern scenario, the cooling is largest over North America, India, the Middle East, and East Asia. Under increased GHG forcing, this cooling effect largely disappears over North America, remains relatively unchanged over India, and intensifies over parts of China and the Middle East. For North America, irrigation significantly increases precipitation under modern GHG forcing; this precipitation enhancement largely disappears under A1B forcing, reducing total latent heat fluxes and the overall irrigation cooling effect. Over India, irrigation rates are high enough to keep pace with increased evaporative demand from the increased GHG forcing and the magnitude of the cooling is maintained. Over China, GHG forcing reduces precipitation and shifts the region to a drier evaporative regime, leading to a relatively increased impact of additional water from irrigation on the surface energy balance. Irrigation enhances precipitation in the Middle East under increased GHG forcing, increasing total latent heat fluxes and enhancing the irrigation cooling effect. Ultimately, the extent to which irrigation will continue to compensate for the warming from increased GHG forcing will primarily depend on changes in the background evaporative regime, secondary irrigation effects (e.g. clouds, precipitation), and the ability of societies to maintain (or increase) current irrigation rates.  相似文献   
225.
Uncertainties in simulating the seasonal mean atmospheric water cycle in Equatorial East Africa are quantified using 58 one-year-long experiments performed with the Weather Research and Forecasting model (WRF). Tested parameters include physical parameterizations of atmospheric convection, cloud microphysics, planetary boundary layer, land-surface model and radiation schemes, as well as land-use categories (USGS vs. MODIS), lateral forcings (ERA-Interim and ERA40 reanalyses), and domain geometry (size and vertical resolution). Results show that (1) uncertainties, defined as the differences between the experiments, are larger than the biases; (2) the parameters exerting the largest influence on simulated rainfall are, in order of decreasing importance, the shortwave radiation scheme, the land-surface model, the domain size, followed by convective schemes and land-use categories; (3) cloud microphysics, lateral forcing reanalysis, the number of vertical levels and planetary boundary layer schemes appear to be of lesser importance at the seasonal scale. Though persisting biases (consisting of conditions that are too wet over the Indian Ocean and the Congo Basin and too dry over eastern Kenya) prevail in most experiments, several configurations simulate the regional climate with reasonable accuracy.  相似文献   
226.
This study explores the discursive dynamics behind the controversy to build the US$17.8 billion 4800 MW Medupi coal-fired power plant in South Africa, the seventh largest in the world. It begins by viewing climate change and energy security not as objective fact driven concepts, but constantly negotiated discourses. Based on a sampling of project documents, reports, testimony, and popular articles, the study then maps the discursive justifications behind the project as well as those against it. More specifically, it isolates themes of economic development, environmental sustainability, and energy security that converge into a discursive ensemble of inevitability supporting complete electrification for all of South Africa. The study also documents themes at the heart of the campaign against Medupi: maldevelopment and secrecy, local and global environmental degradation, and energy poverty which coalesce into a grand narrative of democracy. Tracing the intricacies of the Medupi controversy provides rich insight into energy policy and planning in South Africa. It also emphasizes how struggles to expand access to energy services can exacerbate degradation of the environment, and shows how climate and environmental discourses can become institutionalized.  相似文献   
227.
Petrological, volcanological and geochronological data collected at Mathews Tuya together provide constraints on paleoclimate conditions during formation of the edifice. The basaltic tuya was produced via Pleistocene glaciovolcanism in northern British Columbia, Canada, and is located within the Tuya volcanic field (59.195°N/130.434°W), which is part of the northern Cordilleran volcanic province (NCVP). The edifice comprises a variety of lithofacies, including columnar-jointed lava, pillow lava, massive dikes, and volcaniclastic rocks. Collectively these deposits record the transition from an explosive subaqueous to an effusive subaerial eruption environment dominated by Pleistocene ice. As is typical for tuyas, the volcaniclastic facies record multiple fragmentation processes including explosive, quench and mechanical fragmentation. All samples from Mathews Tuya are olivine-plagioclase porphyritic alkali olivine basalts. They are mineralogically and geochemically similar to nearby glaciovolcanic centers from the southeastern part of the Tuya volcanic field (e.g., Ash Mountain, South Tuya, Tuya Butte) as well as the dominant NCVP rock type. Crystallization scenarios calculated with MELTS account for variations between whole rock and glass compositions via low pressure fractionation. The presence of olivine microphenocrysts and the absence of pyroxene phenocrysts constrain initial crystallization pressures to less than 0.6 GPa. The eruption of Mathews Tuya occurred between 0.718 ± 0.054 Ma and 0.742 ± 0.081 Ma based on 40Ar/39Ar geochronology (weighted mean age of 0.730 Ma). The age determinations provide the first firm documentation for large (>700 m thick), pre-Fraser/Wisconsin glaciers in north-central British Columbia ~0.730 Ma, and correlate in age with glaciovolcanic deposits in Russia (e.g., Komatsu et al. Geomorph 88: 352-366, 2007) and with marine isotopic evidence for large global ice volumes ~0.730 Ma.  相似文献   
228.
229.
We demonstrate evidence that past composite based studies centred around the onset of Forbush decrease (FD) events may have improperly isolated the maximal galactic cosmic ray (GCR) decrease associated with the FD events. After an adjustment of the composite to account for such shortcomings we find indications of anomalous cloud cover decreases (of around 3%) located in the upper levels of the troposphere at high southern latitudes. These cloud changes are detectable after latitudinal averaging, suggesting the possibility of a second order relationship between the rate of GCR flux and cloud cover in this region. The maximal cloud change is observed in advance of the maximal GCR decrease; this implies that if the observed cloud changes bear a causal relationship to the rate of GCR flux, then cloud properties may be sensitive to changes in GCR conditions rather than the maximal deviations themselves.  相似文献   
230.
Bifurcations in tidally influenced deltas distribute river discharge over downstream channels, asserting a strong control over terrestrial runoff to the coastal ocean. Whereas the mechanics of river bifurcations is well-understood, junctions in tidal channels have received comparatively little attention in the literature. This paper aims to quantify the tidal impact on subtidal discharge distribution at the bifurcations in the Mahakam Delta, East Kalimantan, Indonesia. The Mahakam Delta is a regular fan-shaped delta, composed of a quasi-symmetric network of rectilinear distributaries and sinuous tidal channels. A depth-averaged version of the unstructured-mesh, finite-element model second-generation Louvain-la-Neuve Ice-ocean Model has been used to simulate the hydrodynamics driven by river discharge and tides in the delta channel network. The model was forced with tides at open sea boundaries and with measured and modeled river discharge at upstream locations. Calibration was performed with water level time series and flow measurements, both spanning a simulation period. Validation was performed by comparing the model results with discharge measurements at the two principal bifurcations in the delta. Results indicate that within 10 to 15 km from the delta apex, the tides alter the river discharge division by about 10% in all bifurcations. The tidal impact increases seaward, with a maximum value of the order of 30%. In general, the effect of tides is to hamper the discharge division that would occur in the case without tides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号