首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1893篇
  免费   87篇
  国内免费   69篇
测绘学   50篇
大气科学   172篇
地球物理   338篇
地质学   773篇
海洋学   169篇
天文学   378篇
综合类   16篇
自然地理   153篇
  2023年   13篇
  2022年   12篇
  2021年   38篇
  2020年   35篇
  2019年   31篇
  2018年   58篇
  2017年   59篇
  2016年   54篇
  2015年   48篇
  2014年   75篇
  2013年   119篇
  2012年   76篇
  2011年   88篇
  2010年   68篇
  2009年   121篇
  2008年   83篇
  2007年   70篇
  2006年   78篇
  2005年   69篇
  2004年   68篇
  2003年   73篇
  2002年   62篇
  2001年   45篇
  2000年   50篇
  1999年   34篇
  1998年   30篇
  1997年   21篇
  1996年   19篇
  1995年   29篇
  1994年   34篇
  1993年   17篇
  1992年   24篇
  1991年   11篇
  1990年   25篇
  1989年   13篇
  1988年   14篇
  1987年   17篇
  1986年   14篇
  1985年   24篇
  1984年   33篇
  1983年   20篇
  1982年   18篇
  1981年   15篇
  1980年   17篇
  1979年   14篇
  1978年   13篇
  1977年   15篇
  1975年   10篇
  1974年   13篇
  1973年   11篇
排序方式: 共有2049条查询结果,搜索用时 31 毫秒
101.
15011993

Abstract

In 1990–1991 the LITHOPROBE project completed 450 km of seismic reflection profiles across the late Archaean crust of the southwestern Superior province. The results define a broad three-fold division of crust: upper crust in the Abitibi greenstone belt is non-reflective and is a 6–8 km veneer of volcanic and plutonic supracrustal rocks, whereas, in the sediment-gneiss dominated Pontiac subprovince, upper crust comprises shallow northwest-dipping turbidite sequences; mid-crust, in both the Abitibi and the Pontiac subprovinces, is interpreted as imbricate sequences of metasedimentary and metaplutonic rocks; lower crust in both subprovinces has a horizontal layer parallel strycture which may represent interleaved mafic-intermediate gneisses. The seismic signature of the northern Abitibi greenstone belt may be represented in an exposed 25 km crustal section in the Kapuskasing stuctural zone.

Preliminary tectonic models based on the seismic data are consistent with a plate-tectonic scenario involving oblique subduction and imbrication of sedimentary, plutonic and volcanic sequences. The northern Abitibi supracrustal sequences either represent an allochthon, or overlie an allochthonous underthrust metasedimentary and plutonic sequence which may be equivalent to a metasedimentary subprovince such as the Pontiac or Quetico.

Seismic velocities have yet to be defined. However, crustal thicknesses are relatively constant at 35–40 km. The thinnest crust is adjacent to the Grenville Front where Moho is very well defined.  相似文献   

102.
Abstract Fossil pinnipeds in the extinct otariid subfamily Allodesminae are large, relatively highly evolved marine carnivores that became abundant and diverse in Middle Miocene time and were restricted to the North Pacific Ocean. Their record extends from early Middle Miocene through Late Miocene, with records from California, Oregon, Washington, Baja California and Japan. Allodesmines are characterized by extreme sexual dimorphism, a large orbit, retracted orbital margin of the zygomatic arch, a deeply mortised jugal-squamosal junction, wide palate, bulbous cheek tooth crowns, nearly flat tympanic bulla with wrinkled ventral surface, a large tympanohyal fossa, large ear ossicles and deep mandible. Eleven allodesmine species are known (eight of which are named), in at least four genera, and most belong to the typical genus Allodesmus Kellogg, 1922. The earliest and most generalized allodesmine known is from the early Middle Miocene (ca 16 Ma) Astoria Formation in coastal Oregon. The last known records are from Late Miocene rocks (ca 10 Ma) in California and Washington. New taxa proposed here are: the genus Brachyallodesmus Barnes and Hirota, to contain Allodesmus packardi Barnes, 1972; the genus Megagomphos Hirota and Barnes, to contain Allodesmus sinanoensis (Nagao, 1941); the species Allodesmus sadoensis Hirota, (Middle Miocene, Japan); the species Allodesmus megallos Hirota (Middle Miocene, Japan); and the species Allodesmus gracilis Barnes (Middle Miocene, California). Additionally, the genus Atopotarus Downs, 1956, and the species Allodesmus kelloggi Mitchell, 1966, are resurrected. Allodesmines were apparently a rapidly evolving group, and most appear to have been adapted to roles later filled by otariine, dusignathine and imagotariine otariids, and the Phocidae (true seals). They became extinct in Late Miocene time and left no living descendants. Although some of their characters evolved convergently with various living species of the pinniped family Phocidae, Allodesminae are an otariid group and not part of the evolutionary history of Phocidae.  相似文献   
103.
Abstract The fossil pinniped record of the North Pacific Ocean includes both Phocidae and Otariidae ( sensu lato ), extends from the Late Oligocene to the Late Pleistocene, is taxonomically diverse, and is constantly becoming more complete owing to additional important discoveries. The earliest and most diverse fossil pinnipeds in the North Pacific are otariids, the phocids not appearing until the latest Pliocene. The theoretical center of otariid pinniped evolutionary history has been considered by some to be in the eastern North Pacific. New materials from the western North Pacific, however, including representatives of the subfamilies Enaliarctinae, Imagotariinae, Odobeninae and Otariinae, indicate that pinniped evolutionary patterns were basin-wide phenomena, and that a more complete record undoubtedly would reveal numerous trans-Pacific distributions. This would be expected considering the distributions of living species. The paucity of fossil Phocidae and their absence from pre-Pliocene deposits are consistent with theories that the family primarily evolved outside the North Pacific.  相似文献   
104.
Abstract The Cetacea are the most diverse and highly aquatically adapted group of mammals. Their fossil record extends back at least to the Middle Eocene ( ca 50 Ma), and they will possibly be found earlier, judging by the relatively highly evolved nature of the earliest known whales. The most likely terrestrial ancestors of whales are the mesonychids, primitive hoofed mammals with omnivorous diets. Recently discovered archaeocetes with large, mesonychid-like heads and dentitions and functional hind limbs reconfirm earlier ideas about the mesonychid origin of cetaceans and the amphibious nature of the earliest transitional forms. Fossil cetaceans are relatively abundant and diverse thoughout the world, and are now known from every continent, including Antarctica. Odontocetes evolved echolocation to locate food. Mysticetes developed bulk feeding adaptations. Both undoubtedly evolved from archaeocetes, and the monophyly of Cetacea is the most parsimonious present hypothesis. Chromosomal and molecular evidence has taken an increasingly important role in determining cetacean relationships, but fossils and classical comparative morphological studies remain a necessary and pivotal source of information about cetacean phylogeny.  相似文献   
105.
Abstract Fossil whales in the very rare, primitive, extinct cetacean family Aetiocetidae are small, relict, toothed mysticetes that persisted into Late Oligocene time after more highly derived baleen-bearing mysticetes had already evolved. No known aetiocetid could be ancestral to baleen-bearing mysticetes, but aetiocetid morphology is in many ways intermediate between archaeocetes and baleen-bearing mysticetes, demonstrating the probable transitional steps passed through in the evolution of baleen-bearing mysticetes. Their discovery indicates that mysticetes evolved from Archaeocetes, and supports theories of the monophyly of Cetacea. Late Oligocene aetiocetids have been found on both sides of the North Pacific Ocean: on Vancouver Island, British Columbia, Canada; in Oregon and Washington, USA; in Baja California Sur, México; and the islands of Kyushu and Hokkaido, Japan. The most primitive North American aetiocetid, Chonecetus sookensis Russell, 1968, is from the early Late Oligocene Hesquiat Formation on Vancouver Island, British Columbia, Canada. A more derived, Late Oligocene species, Chonecetus goedertorum Barnes and Furusawa, new species, from the Late Oligocene Pysht Formation, Olympic Peninsula, Washington, has the primitive placental mammalian tooth count of 11/11. The type genus of the family, Aetiocetus Emlong, 1966, has as its type species, A. cotylalveus Emlong, 1966, known only from the Late Oligocene Yaquina Formation on the coast of Oregon. It has 11 upper teeth on each side of the rostrum. A more derived species, Aetiocetus weltoni Barnes and Kimura, new species, from a higher stratigraphic level in the Yaquina Formation, has a more posteriorly positioned cranial vertex and a tooth count of 11/12. We describe four new species of aetiocetids in three genera from the Late Oligocene Morawan Formation near Ashoro, Hokkaido, Japan. The most primitive, Ashorocetus eguchii Barnes and Kimura, new genus and species, has a primitive stage of cranial telescoping, and is closely related to Chonecetus Russell, 1968. Another, Morawanocetus yabukii Kimura and Barnes, new genus and species, in some ways intermediate between Chonecetus and Aetiocetus, has a suite of unique derived characters, including a much foreshortened brain case. The third, Aetiocetus tomitai Kimura and Barnes, new species, is the most primitive species of Aetiocetus yet discovered. The fourth, Aetiocetus polydentatus Sawamura, new species, the most derived species of Aetiocetus known, has a highly telescoped cranium, homodonty, polydonty and a dental count of 13–14/14–15. The fossil record now indicates considerable diversity in the family, with several different contemporaneous lineages in three new subfamilies: Chonecetinae, Morawanocetinae and Aetiocetinae. Aetiocetids are not known outside the North Pacific. Many Recent mysticetes are essentially cosmopolitan, and aetiocetids might have also been relatively widely dispersed. We suspect that with time their remains will be found around other ocean basins also. If so, then they may be potentially useful in trans-oceanic geological correlations.  相似文献   
106.
Bent-over buoyant jets distorted by a crosscurrent develop a vortex pair structure and can bifurcate to produce two distinct lobes which diverge from one another downwind. The region downwind of the source between the lobes has relatively low proportions of discharged fluid. Factors invoked by previous workers to cause or enhance bifurcation include buoyancy, release of latent heat at the plume edge by evaporating water droplets, geometry and orientation of the source, and the encounter with a density interface on the rising path of the plume. We suggest that the pressure distribution around the vortex pair of a rising plume may initially trigger bifurcation. We also report new experimental observations confirming that bifurcation becomes stronger for stronger bent-over plumes, identifying that bifurcation can also occur for straight-edged plumes but gradually disappears for stronger plumes which form a gravity current at their final level and spread for a significant distance against the current. Observations from satellites and the ground are reviewed and confirm that volcanic plumes can show bifurcation and a large range of bifurcation angles. Many of the bifurcating plumes spread out at the tropopause level and suggest the tropopause may act on the plumes as a density interface enhancing bifurcation. Even for quite moderate bifurcation angles, the two plume lobes become rapidly separated downwind by distances of tens of kilometers. Such bifurcating plumes drifting apart can only result in bilobate tephra fall deposits. The tephra fall deposit from the 16 km elevation, SE spreading, bifurcating volcanic plume erupted on 15 May 1981 from Mt Pagan was sampled by previous workers and clearly displayed bilobate characteristics. Examples of bilobate tephra fall deposits are reviewed and their origin briefly discussed. Bilobate deposits are common and may result from many causes. Plume bifurcation should be considered one of the possible mechanisms which can account for come examples of bilobate tephra fall deposits.  相似文献   
107.
108.
Aspects of communities and events in the concentrating ponds (S.G. 1.130 to 1.214) and salt crystallizing ponds (S.G. 1.215 to 1.264) of solar saltworks pertinent to salt manufacture are described. Communities that aid salt manufacture enable continuous and efficient production of high quality salt at a saltworks' design capacity, and they provide important controls on levels of organic matter in the brine. Fluctuating salinities, high concentrations of nutrients, and petroleum products are disturbances that causeAphanothece halophytica andDunaliella salina to release excessive quantities of organic matter, and that suppress or cause death to nutrient stripping organisms. Disturbances result in decreased quality and quantity of salt and increased costs for salt harvest, washing, and pond upkeep. Organic matter can be controlled by management techniques that keep nutrient stripping communities at proper levels and maintain a narrow and unchanging range of salinities in each pond, by constructing pond dikes able to withstand wind and water erosion, and by preventing spills of petroleum products in the ponds.  相似文献   
109.
110.
Peter I Øy is located in the Bellinghausen Sea, 400 km NE of Thurston Island, West Antarctica. It is a Pleistocene volcanic island situated adjacent to a former tranform fault on the continental rise of the presently passive margin between the Pacific and Antarctica. New K-Ar age determinations ranging from 0.1 to 0.35 Ma show that the volcanism responsible for this island took place at the same time as post-subduction, rift-related volcanism occurred in the nearby Marie Byrd Land and the Antarctic Peninsula. The rocks of the island are alkalic basalt and hawaiite, benmoreite and trachyte. The basic tocks typically contain phenocrysts of olivine (Fo61–84), diopsidic augite, and plagioclase (ca. An60). Small xenoliths are present and consist of mantle-type spinel lherzolite, cumulate clinopyroxenite and gabbro and felsic inclusions that consist of medium-grained strained quartz, plagioclase, and abundant colorless glass. Chemically, the basic rocks are characterized by rather high MgO (7.8–10.2 wt.%) and TiO2 (3.1–3.7 wt.%) and relatively low CaO (8.4–9.5 wt.%) contents. They have steep REE patterns, [(La/Yb)N = 20] with HREE only 5 x chrondrite. Y and Sc are almost constant at relatively low levels. Compatible trace elements such as Ni and Cr show considerable variation (190–300 and 150–470 ppm, respectively.), whereas V shows only little variation. Sr and Nd isotope ratios vary slightly with 87Sr/86Sr averaging 0.70388 and 143Nd/144Nd 0.512782, both typical for ocean island volcanism. Lead isotope ratios are consistently high in basalts; 206Pb/204Pb = 19.194, 207Pb/204Pb = 15.728 and 208Pb/204Pb = 39.290, whereas benmoreïte is somewhat less radiogenic. Oxygen isotope analyses average δ18O = +6.0‰. Incompatible trace elements vary by a factor of 1.5–2.0 within the range of the basic rocks. It is proposed that the incompatible trace-element variations represent different degrees (<10%) of partial melting, and that these melts were later modified by minor (<15‰) olivine and spinel fractionation. The very small variation in Y (and Sc) and the very fractionated REE pattern indicate that the source had an Y- and HREE-rich residual phase, most probably garnet. Furthermore, it is suggested that the source was slightly hydrous and that melting took place at 18–20 kbar. Trachyte was derived by multiphase fractionation of ne-normative basalts, and benmoreite from hy-normative parental liquids. The rocks of Peter I Øy are generally of the same type and age as those outcropping in extensional regimes on the nearby continent, and therefore, these occurrences may be related to each other in some way. However, the Peter I Øy rocks are considerably more radiogenic in strontium and less radiogenic in neodymium than the rocks of the Antarctic Peninsula and Marie Byrd Land. Possible explanations are that Peter I Øy represent asthenospheric hot spot activity, or transtensional rifting as subduction ceased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号