首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   4篇
  国内免费   2篇
测绘学   4篇
大气科学   9篇
地球物理   48篇
地质学   41篇
海洋学   19篇
天文学   5篇
自然地理   7篇
  2024年   1篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   6篇
  2018年   5篇
  2017年   8篇
  2016年   6篇
  2015年   3篇
  2014年   7篇
  2013年   6篇
  2012年   5篇
  2011年   9篇
  2010年   9篇
  2009年   11篇
  2008年   6篇
  2007年   5篇
  2006年   8篇
  2005年   5篇
  2004年   5篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1993年   3篇
  1991年   1篇
  1988年   2篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有133条查询结果,搜索用时 15 毫秒
81.
In interconnected microcracks, or in microcracks connected to spherical pores, the deformation associated with the passage of mechanical waves can induce fluid flow parallel to the crack walls, which is known as squirt flow. This phenomenon can also occur at larger scales in hydraulically interconnected mesoscopic cracks or fractures. The associated viscous friction causes the waves to experience attenuation and velocity dispersion. We present a simple hydromechanical numerical scheme, based on the interface-coupled Lamé–Navier and Navier–Stokes equations, to simulate squirt flow in the frequency domain. The linearized, quasi-static Navier–Stokes equations describe the laminar flow of a compressible viscous fluid in conduits embedded in a linear elastic solid background described by the quasi-static Lamé–Navier equations. Assuming that the heterogeneous model behaves effectively like a homogeneous viscoelastic medium at a larger spatial scale, the resulting attenuation and stiffness modulus dispersion are computed from spatial averages of the complex-valued, frequency-dependent stress and strain fields. An energy-based approach is implemented to calculate the local contributions to attenuation that, when integrated over the entire model, yield results that are identical to those based on the viscoelastic assumption. In addition to thus validating this assumption, the energy-based approach allows for analyses of the spatial dissipation patterns in squirt flow models. We perform simulations for a series of numerical models to illustrate the viability and versatility of the proposed method. For a 3D model consisting of a spherical crack embedded in a solid background, the characteristic frequency of the resulting P-wave attenuation agrees with that of a corresponding analytical solution, indicating that the dissipative viscous flow problem is appropriately handled in our numerical solution of the linearized, quasi-static Navier–Stokes equations. For 2D models containing either interconnected cracks or cracks connected to a circular pore, the results are compared with those based on Biot's poroelastic equations of consolidation, which are solved through an equivalent approach. Overall, our numerical simulations and the associated analyses demonstrate the suitability of the coupled Lamé–Navier and Navier–Stokes equations and of Biot's equations for quantifying attenuation and dispersion for a range of squirt flow scenarios. These analyses also allow for delineating numerical and physical limitations associated with each set of equations.  相似文献   
82.
We measured the extensional‐mode attenuation and Young's modulus in a porous sample made of sintered borosilicate glass at microseismic to seismic frequencies (0.05–50 Hz) using the forced oscillation method. Partial saturation was achieved by water imbibition, varying the water saturation from an initial dry state up to ~99%, and by gas exsolution from an initially fully water‐saturated state down to ~99%. During forced oscillations of the sample effective stresses up to 10 MPa were applied. We observe frequency‐dependent attenuation, with a peak at 1–5 Hz, for ~99% water saturation achieved both by imbibition and by gas exsolution. The magnitude of this attenuation peak is consistently reduced with increasing fluid pressure and is largely insensitive to changes in effective stress. Similar observations have recently been attributed to wave‐induced gas exsolution–dissolution. At full water saturation, the left‐hand side of an attenuation curve, with a peak beyond the highest measured frequency, is observed at 3 MPa effective stress, while at 10 MPa effective stress the measured attenuation is negligible. This observation is consistent with wave‐induced fluid flow associated with mesoscopic compressibility contrasts in the sample's frame. These variations in compressibility could be due to fractures and/or compaction bands that formed between separate sets of forced‐oscillation experiments in response to the applied stresses. The agreement of the measured frequency‐dependent attenuation and Young's modulus with the Kramers–Kronig relations and additional data analyses indicate the good quality of the measurements. Our observations point to the complex interplay between structural and fluid heterogeneities on the measured seismic attenuation and they illustrate how these heterogeneities can facilitate the dominance of one attenuation mechanism over another.  相似文献   
83.
The North-Patagonian Andean lakes of Argentina are high light, low nutrient environments that exhibit development of deep chlorophyll maxima (DCM) at the metalimnetic layer during summer stratification, at approximately 1 % of surface PAR irradiance. We examined whether the position of DCM changes as a consequence of long-time (global warming: glacial clay input) and short-time (eruption: volcanic ashes) events. We performed different field studies: (1) an interlacustrine analysis of six lakes from different basins, including data of the 2011 volcanic eruption, which caused an unexpected variation in water transparency; and (2) an intralacustrine analysis in which we compared different stations along a transparency gradient in Lake Mascardi caused by glacial clay input at one end of the gradient. In these analyses, we documented changes in DCM depth and its relationship with different parameters. DCM development was not related with thermocline depth or nutrient distribution. In all cases, the only significant variables were Kd 320 nm and Kd PAR. Our study showed that suspended particles (glacial clay and volcanic ashes) can play a crucial role in transparent lakes, affecting lake features such as the phototrophic biomass distribution along the water column. Suspended solid inputs from either glacial clay or volcanic ashes produce a comparable effect, provoking a decrease in light and, consequently, an upper location of the DCM. Thus, the DCM position is highly sensitive to global changes, such as increased temperatures causing glacier recession or to regional changes caused by volcanic eruptions.  相似文献   
84.
This ten-year study examined the morphological, physiological, and ecological characteristics of coral growth anomalies on Acropora cytherea on Amuro Island, Okinawa, Japan. The objectives of the study were to assess whether the growth anomalies, identified as diffuse disruptions on the skeleton: (i) were more prevalent on large colonies than on small colonies, (ii) were more common near the center of the colonies than peripherally, (iii) affected colony growth and mortality, and (iv) affected coral-colony fecundity and photosynthetic capacity. We hypothesized that the growth anomalies were signs of the onset of aging. The growth anomalies were more prevalent on colonies >2 m diameter, and were concentrated near the central (older) portions of the colonies. The growth anomalies were also associated with reduced productivity and dysfunctional gametogenesis. Still, the growth anomalies did not appear to affect colony survival. The contact experiments showed that the growth anomalies were not contagious, and were most likely a sign of aging that was exacerbated by thermal stress.  相似文献   
85.
Results of field measurements carried out from June 15 to December 31, 1995, in Córdoba city (Argentina) are presented. During this field campaign, surface ozone mixing ratios were generally around 30–35 ppb (afternoon peak). However, during the first week of September, days with excessive ozone values close to 100 ppb were found. These elevated ozone concentrations appeared together with high values of NOx, CO, PM10, and an unusual meteorological situation for this time of the year. These results made this episode an interesting one to be studied in more detail. In this work, we used chemical and meteorological data to trace the region from where the assumed precursors were emitted and we identified possible source characteristics.  相似文献   
86.
87.
Drowning of the coast was initiated by a marine inundation after the Last Glacial Maximum (marine isotope stage (MIS) 2) and has continued during the mid-Holocene and highstand (MIS 1). Detailed analyses of two previously examined core stratigraphy and seismic profiles combined with new grain-size and detailed diatom analyses are used to study the history of the Barra Falsa paleochannel over the last 11,000 years BP and to document the peculiar deposition within the channel fill. A rapid sea-level rise was responsible for flooding the coast in 11,180–10,780, 8420–7930, 8150–7870, and 7640–7430 cal years BP, infilling a low topographic back-barrier region. High deposition rates suggest a rapid filling of the channel, which coincides with an accelerated period of sea-level rise, closely linked to the global 8.2-ka event. The morphology of the channel is recognized by facies units in the underlying strata related to one episode of cut and fill during a single cycle of base-level fall and rise. An overall transgressive sequence above the regional surface is related to marine and marine-brackish sediments, which corresponds to a seaward/central basil fill of a wave-dominated estuary.  相似文献   
88.
Gypsum is one of the most universally distributed salts in weathered materials but little is known about the influence of environmental conditions on the damage generated by gypsum in stones. To quantify the damage induced by gypsum crystallization acoustic emission techniques are employed to record the elastic energy released during salt crystallization cycles in a limestone. Different environmental conditions have been established during the cooling and drying periods in traditional salt crystallization cycles. During drying two different temperatures (50 and 25 °C) and relative humidity (low, 25 % at 50 °C and 65 % at 25 °C, and high, 99 %) have been applied. The acoustic emission signals are filtered by a frequency analysis in order to eliminate signals corresponding to external noise or artifacts. Our experimental results show that acoustic emission activity is higher under high relative humidity conditions than under low relative humidity conditions, and also higher when drying at 50 °C than at room temperature. Microscopic observations on the weathered samples indicated that under high relative humidity conditions and at room temperature, gypsum crystallizes not on the sample surface, like in the other samples, but deeper in the inner part of the sample, in good agreement with previously published data. We show that using acoustic emissions as usually done in rock mechanics is also very useful in the study of stone decay and weathering processes in the laboratory.  相似文献   
89.
From the Late Carboniferous until the Middle Jurassic, continents were assembled in a quasi-rigid supercontinent called Pangea. The first palaeomagnetic data of South America indicated that the continent remained stationary in similar present-day latitudes during most of the Mesozoic and even the Palaeozoic. However, new palaeomagnetic data suggest that such a scenario is not likely, at least for the Jurassic. In order to test the stationary versus the dynamic-continent model, we studied the Jurassic apparent polar wander paths of the major continents, that is, Eurasia, Africa and North America that all in all show the same shape and chronology of the tracks with respect to those from South America. We thus present a master path that could be useful for the Jurassic Pangea. One of the most remarkable features observed in the path is the change in pole positions at ~197 Ma (Early Jurassic), which denotes the cessation of the counter-clockwise rotation of Pangea and commencement of a clockwise rotation that brought about changes in palaeolatitude and orientation until the end of the Early Jurassic (185 Ma). Here, we analyse a number of phenomena that could have triggered the polar shift between 197 and 185 Ma and conclude that true polar wander is the most likely. In order to do this, we used Morgan’s (Tectonophysics 94:123–139, 1983) grid of hotspots and performed “absolute” palaeogeographical reconstructions of Pangea for the Late Triassic and Jurassic. The palaeolatitudes changes that we observe from our palaeomagnetic data are very well sustained by diverse palaeoclimatic proxies derived from geological and palaeoecological data at this time of both the southern and northern hemispheres.  相似文献   
90.
Palaeotemperature estimates from the oxygen‐isotope compositions of belemnites have been hampered by not knowing ancient seawater isotope compositions well enough. We have tackled this problem using Mg/Ca as a proxy for temperature and here, we present a ~2 Ma record of paired Mg/Ca and δ18O measurements of Jurassic (Early Pliensbachian) belemnites from the Asturian basin as a palaeo‐proxy of seawater oxygen‐isotope composition. From the combined use of the two approaches, we suggest a δ18Ow composition of about ?0.1‰ for the Jamesoni–Ibex zones. This value may have been increased by about 0.6‰ during the Davoei Zone due to the effect of waters with a different δ18Ow composition. These findings illustrate the inaccuracy of using a globally homogeneous ice‐free value of δ18Ow = ?1‰ for δ18Ocarb‐based palaeotemperature reconstructions. Our data suggest that previous palaeotemperatures calculated in the region from δ18O values of belemnites may have been underestimated as the seawater oxygen isotopic composition could have been higher.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号